力扣34——在排序数组中查找元素的第一个和最后一个位置

本文介绍如何使用C++的二分查找思想实现`searchRange`函数,解决在有序数组中查找目标值首次和最后一次出现位置的问题。通过lower_bound和upper_bound函数模拟,适合已排序整数数组。实例演示了如何处理空数组和目标值不存在的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
给定一个增序的整数数组和一个值,查找该值第一次和最后一次出现的位置。

输入输出样例
输入是一个数组和一个值,输出为该值第一次出现的位置和最后一次出现的位置(从 0 开始);如果不存在该值,则两个返回值都设为-1。

Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]
数字 8 在第 3 位第一次出现,在第 4 位最后一次出现。

题解
这道题可以看作是自己实现 C++ 里的 lower_bound 和 upper_bound 函数。这里我们尝试
使用左闭右开的写法,在这里使用二分法实现这两个函数
由于 upper_bound() 底层实现采用的是二分查找的方式,因此该函数仅适用于“已排好序”的序列。注意,这里所说的“已排好序”,并不要求数据完全按照某个排序规则进行升序或降序排序,而仅仅要求 [first, last) 区域内所有令 element<val(或者 comp(val, element)成立的元素都位于不成立元素的前面(其中 element 为指定范围内的元素)。

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        if(nums.empty()) return vector<int>{-1,-1};

        int lower =lower_bound(nums,target);
        int upper =upper_bound(nums,target)-1;

        if(lower==nums.size() || nums[lower]!=target){
            return vector<int>{-1,-1};
        }
            return vector<int>{lower,upper};
    }
    int lower_bound(vector<int>&nums,int target){
        int l=0,r=nums.size(),mid;
        while(l<r){
            mid=l+(r-l)/2;
            if(nums[mid]>=target){
                r=mid;
            }else{
                l=mid+1;
            }
        }
        return l;
    }
    int upper_bound(vector<int>&nums,int target){
        int l=0,r=nums.size(),mid;
        while(l<r){
            mid = l + (r-l)/2;
            if(nums[mid]>target){
                r=mid;
            }else{
                l=mid+1;
            }
        }
        return l;
    }

};

在这里插入图片描述

### C语言实现合并两个有序数组 在C语言中,可以采用双指针方法来高效地合并两个已排序数组。这种方法利用了输入数组已经排序的特点,在不额外占用大量空间的情况下完成合并操作。 对于给定的任务——将`nums2`合并入`nums1`并保持其非递减顺序排列,可以从两个数组的有效部分末端开始向前遍历比较,并逐步填充至`nums1`的尾部位置[^5]。 下面展示一段具体的代码示例: ```c void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n){ int end1 = m - 1; // 指向第一个数组最后一个有效元素位置 int end2 = n - 1; // 指向第二个数组最后一个有效元素位置 int end = m + n - 1; // 指向合并后数组应放置下一个较大值的位置 while (end1 >= 0 && end2 >= 0) { if (nums1[end1] > nums2[end2]) { nums1[end--] = nums1[end1--]; } else { nums1[end--] = nums2[end2--]; } } // 如果num2还有剩余,则全部复制过来;因为如果此时有任一数组未处理完毕, // 剩下的一定是较小者,而这些较小者的原始位置已经在正确的地方(即nums1前面) while(end2 >= 0){ nums1[end--] = nums2[end2--]; } } ``` 此函数接收五个参数:目标数组`nums1`及其大小`nums1Size`、实际长度`m`;源数组`nums2`及其大小`nums2Size`、实际长度`n`。通过调整索引来避免越界访问的同时完成了两数组的合并工作[^4]。 该算法的时间复杂度为O(m+n),其中mn分别是两个输入数组的实际长度。这是因为每个元素最多只会被访问一次。此外,由于是在原地修改`nums1`,因此不需要额外的空间开销,除了几个用于追踪进度的变量外[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值