MongoDB主从集群、副本集与分片集群
一、主从复制
主从复制是MongoDB最常用的复制方式,也是一个简单的数据库同步备份的集群技术,这种方式很灵活.可用于备份,故障恢复,读扩展等. 最基本的设置方式就是建立一个主节点和一个或多个从节点,每个从节点要知道主节点的地址。采用双机备份后主节点挂掉了后从节点可以接替主机继续服务。所以这种模式比单节点的高可用性要好很多。
配置主从复制的注意点
1)在数据库集群中要明确的知道谁是主服务器,主服务器只有一台.
2)从服务器要知道自己的数据源也就是对应的主服务是谁.
3)–master用来确定主服务器,–slave 和 --source 来控制从服务器
二、副本集
副本集具有自动故障恢复的功能。
主从集群和副本集最大的区别就是副本集没有固定的“主节点”;整个集群会选出一个“主节点”,当其挂掉后,又在剩下的从节点中选中其他节点为“主节点”,副本集总有一个活跃点(primary)和一个或多个备份节点(secondary)。
副本集(Replica Set):
通俗的说,副本集就是集群,主从复制,读写分离,故障切换。
副本集是Mongodb原来的主从模式的升级版本,官方已经不再推荐使用主从模式。
MongoDB的副本集与主从有所不同,主从在主机宕机后所有服务将停止,而副本集在主机宕机后,副本会接管主节点成为主节点,不会出现宕机的情况。
mongodb的复制至少需要两个节点。其中一个是主节点,负责处理客户端请求,其余的都是从节点,负责复制主节点上的数据。
mongodb各个节点常见的搭配方式为:一主一从、一主多从。
主节点记录在其上的所有操作oplog,从节点定期轮询主节点获取这些操作,然后对自己的数据副本执行这些操作,从而保证从节点的数据与主节点一致。
MongoDB复制结构图如下所示:
Ps:这张图中读写都是从主节点,其实可以设置读操作走从节点,但是写入操作只能是在主节点上。
心跳检测:
整个集群需要保持一定的通信才能知道哪些节点活着哪些节点挂掉。mongodb节点会向副本集中的其他节点每两秒就会发送一次pings包,如果其他节点在10秒钟
之内没有返回就标示为不能访问。每个节点内部都会维护一个状态映射表,表明当前每个节点是什么角色、日志时间戳等关键信息。如果是主节点,除了维护映射表
外还需要检查自己能否和集群中内大部分节点通讯,如果不能则把自己降级为secondary只读节点。
数据同步
副本集同步分为初始化同步和keep复制。初始化同步指全量从主节点同步数据,如果主节点数据量比较大同步时间会比较长。而keep复制指初始化同步过后,节点
之间的实时同步一般是增量同步。初始化同步不只是在第一次才会被处罚,有以下两种情况会触发:
1)secondary第一次加入,这个是肯定的。
2)secondary落后的数据量超过了oplog的大小,这样也会被全量复制。
客户端连接到副本集后,不关心具体哪一台机器是否挂掉。主服务器负责整个副本集的读写,副本集定期同步数据备份。一旦主节点挂掉,副本节点就会选举一个新的主服务器。这一切对于应用服务器不需要关心。
副本集包括三种节点:主节点、从节点、仲裁节点。
1)主节点负责处理客户端请求,读、写数据, 记录在其上所有操作的 oplog;
2)从节点定期轮询主节点获取这些操作,然后对自己的数据副本执行这些操作,从而保证从节点的数据与主节点一致。默认情况下,从节点不支持外部读取,但可以设置;
副本集的机制在于主节点出现故障的时候,余下的节点会选举出一个新的主节点,从而保证系统可以正常运行。
3)仲裁节点不复制数据,仅参与投票。由于它没有访问的压力,比较空闲,因此不容易出故障。由于副本集出现故障的时候,存活的节点必须大于副本集节点总数的一半,
否则无法选举主节点,或者主节点会自动降级为从节点,整个副本集变为只读。因此,增加一个不容易出故障的仲裁节点,可以增加有效选票,降低整个副本集不可用的
风险。仲裁节点可多于一个。也就是说只参与投票,不接收复制的数据,也不能成为活跃节点。
副本集的工作流程
在 MongoDB 副本集中,主节点负责处理客户端的读写请求,备份节点则负责映射主节点的 数据。备份节点的工作原理过程可以大致描述为,备份节点定期轮询主节点上的数据操作,
然后对 自己的数据副本进行这些操作,从而保证跟主节点的数据同步。至于主节点上的所有 数据库状态改变 的操作,都会存放在一张特定的系统表中。备份节点则是根据这些数据进
行自己的数据更新。
oplog
上面提到的数据库状态改变的操作,称为 oplog(operation log,主节点操作记录)。oplog 存储在 local 数据库的"oplog.rs"表中。副本集中备份节点异步的从主节点同步 oplog,然后重新 执行它记录的操作,以此达到了数据同步的作用。
关于 oplog 有几个注意的地方:
1)oplog 只记录改变数据库状态的操作
2)存储在 oplog 中的操作并不是和主节点执行的操作完全一样,例如"$inc"操作就会转化为"$set"操作
3)oplog 存储在固定集合中(capped collection),当 oplog 的数量超过 oplogSize,新的操作就会覆盖就的操作
数据同步
在副本集中,有两种数据同步方式:
1)initial sync(初始化):这个过程发生在当副本集中创建一个新的数据库或其中某个节点刚从宕机中恢复,或者向副本集中添加新的成员的时候,默认的,副本集中的节点会从离 它最近
的节点复制 oplog 来同步数据,这个最近的节点可以是 primary 也可以是拥有最新 oplog 副本的 secondary 节点。该操作一般会重新初始化备份节点,开销较大。
2)replication(复制):在初始化后这个操作会一直持续的进行着,以保持各个 secondary 节点之间的数据同步。
initial sync
当遇到无法同步的问题时,只能使用以下两种方式进行 initial sync 了
1)第一种方式就是停止该节点,然后删除目录中的文件,重新启动该节点。这样,这个节 点就会执行 initial sync
注意:通过这种方式,sync 的时间是根据数据量大小的,如果数据量过大,sync 时间就 会很长
同时会有很多网络传输,可能会影响其他节点的工作
2)第二种方式,停止该节点,然后删除目录中的文件,找一个比较新的节点,然后把该节点目 录中的文件拷贝到要 sync 的节点目录中
通过上面两种方式中的一种,都可以重新恢复"port=33333"的节点。不在进行截图了。
副本集管理
1)查看oplog的信息 通过"db.printReplicationInfo()"命令可以查看 oplog 的信息
字段说明:
configured oplog size: oplog 文件大小
log length start to end: oplog 日志的启用时间段
oplog first event time: 第一个事务日志的产生时间
oplog last event time: 最后一个事务日志的产生时间
now: 现在的时间
2)查看 slave 状态 通过"db.printSlaveReplicationInfo()"可以查看 slave 的同步状态
当插入一条新的数据,然后重新检查 slave 状态时,就会发现 sync 时间更新了
副本集选举的过程和注意点
Mongodb副本集选举采用的是Bully算法,这是一种协调者(主节点)竞选算法,主要思想是集群的每个成员都可以声明它是主节点并通知其他节点。
别的节点可以选择接受这个声称或是拒绝并进入主节点竞争,被其他所有节点接受的节点才能成为主节点。
节点按照一些属性来判断谁应该胜出,这个属性可以是一个静态 ID,也可以是更新的度量像最近一次事务ID(最新的节点会胜出)
副本集的选举过程大致如下:
1)得到每个服务器节点的最后操作时间戳。每个 mongodb 都有 oplog 机制会记录本机的操作,方便和主服 务器进行对比数据是否同步还可以用于错误恢复。
2)如果集群中大部分服务器 down 机了,保留活着的节点都为 secondary 状态并停止,不选举了。
3)如果集群中选举出来的主节点或者所有从节点最后一次同步时间看起来很旧了,停止选举等待人来操作。
4)如果上面都没有问题就选择最后操作时间戳最新(保证数据是最新的)的服务器节点作为主节点。
副本集选举的特点:
选举还有个前提条件,参与选举的节点数量必须大于副本集总节点数量的一半(建议副本集成员为奇数。最多12个副本节点,最多7个节点参与选举)
如果已经小于一半了所有节点保持只读状态。集合中的成员一定要有大部分成员(即超过一半数量)是保持正常在线状态,3个成员的副本集,需要至少2个从属节点是正常状态。
如果一个从属节点挂掉,那么当主节点down掉 产生故障切换时,由于副本集中只有一个节点是正常的,少于一半,则选举失败。
4个成员的副本集,则需要3个成员是正常状态(先关闭一个从属节点,然后再关闭主节点,产生故障切换,此时副本集中只有2个节点正常,则无法成功选举出新主节点)。
副本集数据过程
Primary节点写入数据,Secondary通过读取Primary的oplog得到复制信息,开始复制数据并且将复制信息写入到自己的oplog。如果某个操作失败,则备份节点
停止从当前数据源复制数据。如果某个备份节点由于某些原因挂掉了,当重新启动后,就会自动从oplog的最后一个操作开始同步,同步完成后,将信息写入自己的
oplog,由于复制操作是先复制数据,复制完成后再写入oplog,有可能相同的操作会同步两份,不过MongoDB在设计之初就考虑到这个问题,将oplog的同一个操作
执行多次,与执行一次的效果是一样的。简单的说就是:
当Primary节点完成数据操作后,Secondary会做出一系列的动作保证数据的同步:
1)检查自己local库的oplog.rs集合找出最近的时间戳。
2)检查Primary节点local库oplog.rs集合,找出大于此时间戳的记录。
3)将找到的记录插入到自己的oplog.rs集合中,并执行这些操作。
副本集的同步和主从同步一样,都是异步同步的过程,不同的是副本集有个自动故障转移的功能。其原理是:slave端从primary端获取日志,然后在自己身上完全顺序
的执行日志所记录的各种操作(该日志是不记录查询操作的),这个日志就是local数据 库中的oplog.rs表,默认在64位机器上这个表是比较大的,占磁盘大小的5%,
oplog.rs的大小可以在启动参数中设 定:--oplogSize 1000,单位是M。
注意:在副本集的环境中,要是所有的Secondary都宕机了,只剩下Primary。最后Primary会变成Secondary,不能提供服务。
MongoDB 同步延迟问题
当你的用户抱怨修改过的信息不改变,删除掉的数据还在显示,你掐指一算,估计是数据库主从不同步。与其他提供数据同步的数据库一样,MongoDB 也会遇到同步延迟的问题,
在MongoDB的Replica Sets模式中,同步延迟也经常是困扰使用者的一个大问题。
什么是同步延迟?
首先,要出现同步延迟,必然是在有数据同步的场合,在 MongoDB 中,有两种数据冗余方式,一种是Master-Slave 模式,一种是Replica Sets模式。这两个模式本质上都是
在一个节点上执行写操作, 另外的节点将主节点上的写操作同步到自己这边再进行执行。在MongoDB中,所有写操作都会产生 oplog,oplog 是每修改一条数据都会生成一条,如果你采用一个批量 update 命令更新了 N 多条数据, 那么抱歉,oplog 会有很多条,而不是一条。所以同步延迟就是写操作在主节点上执行完后,从节点还没有把 oplog 拿过来再执行一次。而这个写操作的量越大,主节点与从节点的差别也就越大,同步延迟也就越大了。
同步延迟带来的问题
首先,同步操作通常有两个效果,一是读写分离,将读操作放到从节点上来执行,从而减少主节点的 压力。对于大多数场景来说,读多写少是基本特性,所以这一点是很有用的。
另一个作用是数据备份, 同一个写操作除了在主节点执行之外,在从节点上也同样执行,这样我们就有多份同样的数据,一旦 主节点的数据因为各种天灾人祸无法恢复的时候,我们至少还有从节点可以依赖。但是主从延迟问题 可能会对上面两个效果都产生不好的影响。
如果主从延迟过大,主节点上会有很多数据更改没有同步到从节点上。这时候如果主节点故障,就有 两种情况:
1)主节点故障并且无法恢复,如果应用上又无法忍受这部分数据的丢失,我们就得想各种办法将这部 数据更改找回来,再写入到从节点中去。可以想象,即使是有可能,那这也绝对是一件非常恶心的活。
2)主节点能够恢复,但是需要花的时间比较长,这种情况如果应用能忍受,我们可以直接让从节点提 供服务,只是对用户来说,有一段时间的数据丢失了,而如果应用不能接受数据的不一致,那么就只能下线整个业务,等主节点恢复后再提供服务了。
如果你只有一个从节点,当主从延迟过大时,由于主节点只保存最近的一部分 oplog,可能会导致从 节点青黄不接,不得不进行 resync 操作,全量从主节点同步数据。
带来的问题是:当从节点全量同步的时候,实际只有主节点保存了完整的数据,这时候如果主节点故障,很可能全 部数据都丢掉了。
副本集特征:
● N 个节点的集群
● 任何节点可作为主节点
● 所有写入操作都在主节点上
● 自动故障转移
● 自动恢复
三、分片
分片(sharding)是指将数据拆分,将其分散存在不同的机器上的过程。有时也用分区(partitioning)来表示这个概念。将数据分散到不同的机器上,不需要功能强大的大型计算机就可以储存更多的数据,处理更多的负载。
MongoDB分片的基本思想就是将集合切分成小块。这些块分散到若干片里面,每个片只负责总数据的一部分。应用程序不必知道哪片对应哪些数据,甚至不需要知道数据已经被拆分了,所以在分片之前要运行一个路由进程,该进程名为mongos。这个路由器知道所有数据的存放位置,所以应用可以连接它来正常发送请求。对应用来说,它仅知道连接了一个普通的mongod。路由器知道数据和片的对应关系,能够转发请求道正确的片上。如果请求有了回应,路由器将其收集起来回送给应用。
设置分片时,需要从集合里面选一个键,用该键的值作为数据拆分的依据。这个键称为片键(shard key)。
用个例子来说明这个过程:假设有个文档集合表示的是people。如果选择名字(“name”)作为片键,第一片可能会存放名字以A-F开头的文档,第二片存的G-P的名字,第三片存的Q~Z的名字。随着添加或者删除片,MongoDB会重新平衡数据,使每片的流量都比较均衡,数据量也在合理范围内。
分片的架构图如下,这里用两台服务器来进行分片操作:
使用场景:
1)机器的磁盘不够用了。使用分片解决磁盘空间的问题。
2)单个mongod已经不能满足写数据的性能要求。通过分片让写压力分散到各个分片上面,使用分片服务器自身的资源。
3)想把大量数据放到内存里提高性能。和上面一样,通过分片使用分片服务器自身的资源。
要构建一个MongoDB Sharding Cluster(分片集群),需要三种角色:
1)分片服务器(Shard Server)
mongod 实例,用于存储实际的数据块,实际生产环境中一个 shard server 角色可由几台机器组个一个 relica set 承担,防止主机单点故障
这是一个独立普通的mongod进程,保存数据信息。可以是一个副本集也可以是单独的一台服务器。
2)配置服务器(Config Server)
mongod 实例,存储了整个 Cluster Metadata,其中包括 chunk 信息。
这是一个独立的mongod进程,保存集群和分片的元数据,即各分片包含了哪些数据的信息。最先开始建立,启用日志功能。像启动普通的 mongod 一样启动
配置服务器,指定configsvr 选项。不需要太多的空间和资源,配置服务器的 1KB 空间相当于真是数据的 200MB。保存的只是数据的分布表。
3)路由服务器(Route Server)
mongos实例,前端路由,客户端由此接入,且让整个集群看上去像单一数据库,前端应用
起到一个路由的功能,供程序连接。本身不保存数据,在启动时从配置服务器加载集群信息,开启 mongos 进程需要知道配置服务器的地址,指定configdb选项。
分片集群主要由三种组件组成:mongos,config server,shard
-
mongos (路由进程, 应用程序接入 mongos 再查询到具体分片)
数据库集群请求的入口,所有的请求都通过 mongos 进行协调,不需要在应用程序添加一个路由选择器,mongos 自己就是一个请求分发中心,它负责把对应的数据请求
请求转发到对应的 shard 服务器上。在生产环境通常有多个 mongos 作为请求的入口,防止其中一个挂掉所有的 mongodb 请求都没有办法操作。 -
config server (路由表服务。 每一台都具有全部 chunk 的路由信息)
顾名思义为配置服务器,存储所有数据库元信息(路由、分片)的配置。mongos 本身没有物理存储分片服务器和数据路由信息,只是缓存在内存里,配置服务器则实际存储
这些数据。mongos 第一次启动或者关掉重启就会从 config server 加载配置信息,以后如果配置服务器信息变化会通知到所有的 mongos 更新自己的状态,这样
mongos 就能继续准确路由。在生产环境通常有多个 config server 配置服务器,因为它存储了分片路由的元数据,这个可不能丢失!就算挂掉其中一台,只要还有存货,
mongodb 集群就不会挂掉。 -
shard (为数据存储分片。 每一片都可以是复制集(replica set))
这就是传说中的分片了。如图所示,一台机器的一个数据表 Collection1 存储了 1T 数据,压力太大了!在分给 4 个机器后, 每个机器都是 256G,则分摊了集中在一台
机器的压力。事实上,上图4个分片如果没有副本集(replica set)是个不完整架构,假设其中的一个分片挂掉那四 分之一的数据就丢失了,所以在高可用性的分片架构还
需要对于每一个分片构建 replica set 副本集保 证分片的可靠性。生产环境通常是 2 个副本 + 1 个仲裁。
分片集群由以下3个服务组成:Shards Server: 每个shard由一个或多个mongod进程组成,用于存储数据Config Server: 用于存储集群的Metadata信息,包括每个Shard的信息和chunks信息Route Server: 用于提供路由服务,由Client连接,使整个Cluster看起来像单个DB服务器