走楼梯的三种算法(递归,备忘录法,动态规划)

该博客探讨了走楼梯问题的三种解决方案:递归、备忘录法和动态规划。递归算法直接根据阶数递推出上法数量,但存在重复计算;备忘录法通过存储已计算结果避免重复;动态规划则仅保留关键步骤的计算结果,高效求解。10阶楼梯共有89种不同的上法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:
一共有十级台阶,每一次只能上1级或2级,问一共有多少种上台阶的方法。
解析:
这个问题可以从一阶、两阶、三阶来入手。一阶显然只有一种上法发,两阶则有两种上法,三阶则是一阶和两阶上法的总和。
根据这样的思路,我们很容易就可以得到公式:
f(n) = f(n-1) + f(n-2)
对于本问题10阶,则只需要求出9阶8阶的上法和,要知道9阶上法则需要知道8阶和7阶的上法和…直到1阶和2阶。
因此很容易就可以写出一个递归的算法

int get(int n)
{
   //递归
	if(n<1) return 0;
	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kki_m

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值