解析
通过KMP算法处理出一个数组 \(p\), 我们通过 \(strlen ()\) 来求出字符串的长度 \(len\), 该模式串的第 \(1\) 位到第 \(p[len]\) 位于模式串的第 \(len-p[len]\) 位到第 \(len\) 位是匹配的.
所以如果 \(len \equiv 0 (mod (len - p[len]))\) , 则存在重复连续子串, 长度为 \(len - p[len]\), 循环次数为 \(\frac{len}{len~-~p[len]}\)
Code
#include <bits/stdc++.h>
#define N 1000005
using namespace std;
string s1;
int len, ans;
int kmp[N];
void work ()
{
int i = 1, j = 0;
kmp[1] = 0;
while (i < len)
{
while (j && s1[j + 1] != s1[i + 1]) j = kmp[j];
if (s1[j + 1] == s1[i + 1]) ++ j;
kmp[i + 1] = j;
++ i;
}
if (len % (len - kmp[len]) == 0) ans = len / (len - kmp[len]);
return ;
}
int main ()
{
cin >> s1;
while (s1 != ".")
{
ans = 1;
len = s1.length ();
s1 = " " + s1;
work ();
printf ("%d\n", ans);
cin >> s1;
}
return 0;
}