猿辅导面试题 括号染色 动态规划 组合数学

题目描述:

给定一个长度为 n n n的数组 a a a和一个正整数 k k k,对于 a a a数组的描述如下:

  • 如果 a [ i ] = = 0 a[i] == 0 a[i]==0,那么 i i i位置可以填入左括号或者右括号,而且此处的括号颜色可以从 1 , 2 , 3 , . . . , k 1, 2, 3, ..., k 1,2,3,...,k中选择;
  • 如果 a [ i ] ≠ 0 a[i] \ne 0 a[i]=0,那么 i i i位置是一个左括号,并且颜色为 a [ i ] a[i] a[i]

一个合法的括号序列是指的是,括号需要进行匹配,同时相互匹配的括号的颜色必须相同。
例如:()那么这个括号序列如果两个括号的颜色相同,那么该序列就是合法。
返回一共有多少种合法的括号序列。
由于答案可能会很大,你需要输出答案对 10001 10001 10001取模。
数据范围: 2 ≤ n ≤ 5 × 1 0 3 , 1 ≤ k ≤ 1 0 3 , 0 ≤ a [ i ] ≤ k 2 \le n \le 5\times 10^3, 1\le k \le 10^3, 0 \le a[i] \le k 2n5×103,1k103,0a[i]k

题解:

由于相互匹配的括号的颜色一定要相同,我们将已经确定的左括号个数记为 c n t 1 cnt1 cnt1,那么就有 c n t 1 cnt1 cnt1个右括号的颜色一定要与这 c n t 1 cnt1 cnt1个左括号的颜色配对。
有了上述结论,那么我们考虑一个还未染色的合法括号序列能够染出多少种合法序列。由上述结论可以知道:序列中有 2 × c n t 1 2\times cnt1 2×cnt1的位置的颜色是确定的,那么剩下的序列有 n − 2 c n t 1 2 \frac {n-2cnt1}{2} 2n2cnt1对括号,而每对括号有 k k k种染色方法,那么由乘法原理就可以知道一共可以染出 k n − 2 c n t 1 2 k^\frac {n-2cnt1}{2} k2n2cnt1。经过上述的推导,我们发现每个未染色的合法括号序列能染出的合法序列的个数时相同的,所以本题就转换成了求有多少个不染色的合法序列。求出来个数之后,只需要在乘 k n − 2 c n t 1 2 k^\frac {n-2cnt1}{2} k2n2cnt1即可得到一共有多少种合法的括号序列。
下面来考虑如何求未染色的合法序列有多少种,我们需要先思考一下合法序列需要满足的条件:

  • 在任意的位置右括号的数量一定不能超过左括号的数量;
  • 并且在结尾时,左右括号的个数相同。

可以看到一个括号序列合不合法实际上是和左右括号的差值有关,这个差值一定要大于等于 0 0 0,并且在最后的时候需要等于 0 0 0。有了这些信息,我们就可以通过动态规划来求解,状态的定义也就需要围绕位置和左右括号的差值了。
状态定义如下: d p [ i ] [ j ] dp[i][j] dp[i][j]表示考虑 [ 0 , i ] [0, i] [0,i]上满足每个位置的左括号均不少于右括号并且到 i i i位置时,左括号比右括号多 j j j个的括号序列个数。
有了上述的状态,很容易可以写出状态转移方程:

  • d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ]   i f   a [ i ] ≠ 0 dp[i][j] = dp[i-1][j-1]\ if\ a[i]\ne0 dp[i][j]=dp[i1][j1] if a[i]=0
  • d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + d p [ i − 1 ] [ j + 1 ]   i f   a [ i ] = = 0 dp[i][j] = dp[i-1][j-1] + dp[i-1][j+1]\ if\ a[i] == 0 dp[i][j]=dp[i1][j1]+dp[i1][j+1] if a[i]==0,分别对应当前位置填上左右括号。

d p [ n − 1 ] [ 0 ] dp[n-1][0] dp[n1][0]就表示不染色的情况下合法括号序列个数。

代码:

#include <bits/stdc++.h>

const int MAXN = 5e3 + 10;
const int MOD = 10001;

using namespace std;

int n, k, cnt1, ans;
int a[MAXN], dp[MAXN][MAXN];

int quickPower(int a, int b, int mod)
{
    int res = 1;
    while(b) {
        if (b & 1) { res = res * a % mod; }
        a = a * a % mod;
        b >>= 1;
    }
    return res % mod;
}

int main()
{
    ios::sync_with_stdio(false);
    cin >> n >> k;
    for (int i = 0; i < n; i++) { cin >> a[i]; }
    if (n % 2 == 1) {
        cout << "0" << endl;
        return 0;
    }
    for (int i = 0; i < n; i++) {
        if (a[i] != 0) { cnt1++; }
    }
    ans = quickPower(k, (n - 2 * cnt1) / 2, MOD);
    dp[0][1] = 1;
    for (int i = 1; i < n; i++) {
        for (int j = 0; j <= i+1;j ++) {
            if (a[i] == 0) {
                dp[i][j] = ((j - 1 >= 0 ? dp[i - 1][j - 1] : 0) + (j + 1 <= i ? dp[i - 1][j + 1] : 0)) % MOD;
            } else {
                dp[i][j] = (j - 1 >= 0 ? dp[i - 1][j - 1] : 0) % MOD;
            }
        }
    }
    ans *= dp[n - 1][0];
    cout << ans << endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值