Linear Algebra note

一 向量组线性关系与秩

1

证明一组向量组线性无关时,新学到的办法如下:

反证法,要证线性无关,就假设这个向量组线性相关。
然后关键是如何利用向量相关推出矛盾。其中一种实用的办法是:

α 1 , α 2 , α 3 . . . α s \alpha_1, \alpha_2, \alpha_3 ...\alpha_s α1,α2,α3...αs线性相关,则存在不全为0的 c i c_i ci使得 c 1 α 1 + c 2 α + . . . + c s α s = 0 c_1\alpha_1 + c_2\alpha + ... + c_s\alpha_s = 0 c1α1+c2α+...+csαs=0
那么接下来可以从两个角度来看

  1. 我们可以找到第一个不为0的 c l c_l cl,从而得到 c l α l + . . . + c s α s = 0 c_l\alpha_l + ... + c_s\alpha_s = 0 clαl+...+csαs=0
  2. 我们可以找到最后一个不为零的 c l c_l cl,从而得到 c 1 α 1 + . . . + c l α l = 0 c_1\alpha_1 + ... + c_l\alpha_l = 0 c1α1+...+clαl=0

具体选择哪个由结合题目,原则是利用矩阵作用法,用矩阵 A A A左右乘以上述两个等式,就能直接消掉一些项,或者相减后能够消去一些项。

2 作用法

证明向量组线性无关时,如果题目出现

  1. 类似 A α i = α i + 1 A\alpha_i = \alpha_{i+1} Aαi=αi+1
  2. 向量正交,如任意 α i \alpha_i αi与任意 β j \beta_j βj正交

3 正交构造对角

如果 A A A 的各个列向量相互正交(不一定要规范化),那么
A T A = Λ A^TA = \Lambda ATA=Λ

二 特征向量与特征值,对角化

1 秩为1的实对称阵与特征值、特征向量的关系

i ) i) i) 与特征值的关系

如果 r ( A n ) = 1 r(A_n) = 1 r(An)=1 ,那么 A = α β T A = \alpha\beta^T A=αβT,即
A = [ ] [ ] A= \begin{bmatrix} &\\ \\ \\ \end{bmatrix} \begin{bmatrix} &&&\\ \end{bmatrix} A=[]
A n A_n An的特征值为 n − 1 n-1 n1 0 0 0 , 1 1 1 t r ( A ) tr(A) tr(A)

i i ) ii) ii)与特征向量的关系
  • A = α β T A = \alpha\beta^T A=αβT,则 α \alpha α A A A的特征向量
    证: A α = α β T α = ( β T α ) α A\alpha = \alpha\beta^T\alpha = (\beta^T\alpha)\alpha Aα=αβTα=(βTα)α λ = β T α \lambda = \beta^T\alpha λ=βTα
  • 若已知 α \alpha α A A A特征值 λ \lambda λ下的特征向量
    则可设 A = c α α T A = c\alpha\alpha^T A=cααT,且 c = λ ( α , α ) c =\frac{\lambda}{(\alpha,\alpha)} c=(α,α)λ r ( A ) = 1 r(A)=1 r(A)=1

PS

含未知数的行列式化简,可以先把一行化到只剩一个数,然后展开。

2 求特征值的简便方法

求一个矩阵的特征值,可以先把它分解成两个矩阵,其中一个可以是秩为1的矩阵,另一个可以是数量阵。

e.g.
A = [ − 1 2 2 2 − 1 − 2 2 − 2 − 1 ] = [ − 2 2 2 2 − 2 − 2 2 − 2 − 2 ] + E A = \begin{bmatrix} -1&2&2\\ 2&-1&-2\\ 2&-2&-1 \end{bmatrix} =\begin{bmatrix} -2&2&2\\ 2&-2&-2\\ 2&-2&-2\\ \end{bmatrix} +E A=122212221=222222222+E
显然
[ − 2 2 2 2 − 2 − 2 2 − 2 − 2 ] 的 秩 为 1 , 从 而 特 征 值 为 0 , 0 , t r ( ) = − 6 \begin{bmatrix} -2&2&2\\ 2&-2&-2\\ 2&-2&-2\\ \end{bmatrix} 的秩为1,从而特征值为0,0,tr() = -6 222222222100tr()=6

3 代数重数和几何重数

代数重数 ⩾ \geqslant 几何重数 ⩾ \geqslant 1
证: r ( λ E − A ) ⩽ n − 1 r(\lambda E-A)\leqslant n-1 r(λEA)n1
所以几何重数 = n − r ( λ E − A ) ⩾ 1 =n-r(\lambda E-A)\geqslant1 =nr(λEA)1

4

A n A_n An 可对角化,则 Λ \Lambda Λ 对角线上必定是 n n n 个特征值。

5 相似阵相同 λ \lambda λ 下的特征向量关系

A A A B B B 相似,则它们有相同的特征值,
且相同特征值下的特征向量有如下关系:
已知 P − 1 A P = B P^{-1}AP=B P1AP=B A X = λ X AX=\lambda X AX=λX
B ( P − 1 X ) = λ ( P − 1 X ) B(P^{-1}X)=\lambda (P^{-1}X) B(P1X)=λ(P1X)

6 已知特征值或特征向量求 A A A

i ) i) i) 矩阵 A A A 和一个特征向量 ξ \xi ξ,其中一个含有参数,另一个全知,求 λ \lambda λ 和参数 (P109)

A ξ = λ ξ A\xi = \lambda\xi Aξ=λξ 列方程求解。

i i ) ii) ii) 已知全部特征值 λ i \lambda_i λi 和对应的特征向量 α i \alpha_i αi,求矩阵 A A A

解:设 A A A 为 3 阶, P = ( α 1 α 2 α 3 ) P = (\alpha_1 \alpha_2 \alpha_3) P=(α1α2α3)
A P = P ( λ 1 λ 2 λ 3 ) AP=P \begin{pmatrix} \lambda_1&&\\ &\lambda_2&\\ &&\lambda_3 \end{pmatrix} AP=Pλ1λ2λ3
然后先转置,解矩阵方程。

i i i ) iii) iii) 见第一大点
i v ) iv) iv) 也可以特征值之和、特征值之积列等式


证明零空间 N ( A m × n ) N(A_{m \times n}) N(Am×n) 的维度为 n − r n-r nr

思路

找到零空间的一组基,然后随便举出一个解,然后发现这个解可以被那组基线性表出。

具体操作

已知
A X = 0 , R ( A ) = r AX = 0,R(A) = r AX=0R(A)=r
首先我们可进行消元,由 A m × n A_{m \times n} Am×n 得到 A r × n A_{r \times n} Ar×n

通过移项,我们可以得到
( a 11 ⋯ a 1 n ⋮ ⋮ a r 1 ⋯ a r n ) ( x 1 ⋮ x r ) = ( a 1   r + 1 ⋯ a 1   n ⋮ ⋮ a r   n + 1 ⋯ a r   n ) ( x r + 1 ⋮ x n ) \begin{pmatrix} a_{11}&\cdots&a_{1n}\\ \vdots&&\vdots\\ a_{r1}&\cdots&a_{rn}\\ \end{pmatrix} \begin{pmatrix} x_1\\ \vdots\\ x_r \end{pmatrix} = \begin{pmatrix} a_{1\ r+1} & \cdots & a_{1\ n}\\ \vdots&&\vdots\\ a_{r\ n+1} & \cdots & a_{r\ n} \end{pmatrix} \begin{pmatrix} x_{r+1}\\ \vdots\\ x_n \end{pmatrix} a11ar1a1narnx1xr=a1 r+1ar n+1a1 nar nxr+1xn
我们写成
$$

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值