Linear Algebra相关知识总结
本分类下的文章是基于麻省理工公开课:线性代数,对课程中的每一个章节做相应的总结。课程一共有35个课时,这里会以5个课时为单位进行总结。该分类总共会写8节,包括7节的章节总结和一节的总概括。
This chapter is summary of video —— MT Open Class : Linear Algebra, which has 35 lessons.I summarize every 5 lessons. There are 8 chapters contains 7 single summary and one completely summary.
一:方程的几何解释
在开始之前,先贴一下本章的核心:
The fundamental problem of linear algebra, which is solve a linear equations.(线性代数的核心是解线性方程)
本节的总结是默认N元方程组有N个方程来看待的。实际的话该条件是不成立的,这里一次为前提是为了便于讲解不同视图下方程的几何意义。
后文的所有总结都是以如下的方程为例的:
1.1:矩阵视图
根据矩阵的乘法,我们可以通过将上边的公式进行计算,得出前边给的实例方程组。这个就是方程组的矩阵表示形式。我们还可以根据这个推断出N元线性方程的矩阵表示像是如下。这样我们在后续遇到的线性方程组都可以将其转换为矩阵,然后从矩阵的角度去思考问题。这也是线性方程组的一个核心点。
这里我们将从左到右的三个矩阵依次称为系数矩阵——A;位置变量——x;期望值——b。那么我们就会得到我们在后续总结中常见的一个公式Ax=b
1.2: 列视图
这个是将方程组的系数以列为单位进行抽离,将列抽象为一个向量。我们将从左到右的三个分别称为向量A、B、C。那么具体的含义就是我们如何将向量A与向量B进行指定的结合生成向量C。
我们可以将向量A、B在直角坐标系中绘制出来,然后绘制出向量C。那么我们就可以在途中大概找到x、y的值。
从该视图看解N元方程的含义就是:在N维坐标系中怎么计算N个N维向量然后得到指定的向量。
1.3:行视图。
行视图最简单,就是将每个方程代表的图形在相应的坐标系中绘制出来即可。本例给的是一个二元方程组,那么视图就是将方程代表的直线在直角坐标系绘制出来。
从该视图看解N元方程组的含义:找到在N维坐标系中,每个方程代表的图形相交的部分。
1.4:总结
从不同的角度讲解了一个方程的含义,从几何的角度讲解求解一个方程组的几何本质以及几何的表示。而这个将会在后续的讲解中起到很重要的作用。是线性代数的基础。
二:矩阵消元
消元法(Elimination)是我们解N元一次方程组最好的方法。 这里主要讲解通过矩阵的形式实现消元法,而这个操作的核心就是矩阵变换(Matrix Operations)。
本节将以如下方程组以及其矩阵形式作为本次总结的事例:
原方程及其矩阵形式如下:
矩阵与向量的乘积是“矩阵列的线性组合”
2.1:主元与消元
在了解消元法之前首先要掌握一个概念——主元(Pivot Element):
百度的解释是主元,说的通俗一点就是,位于矩阵对角线上的都是主元,主元是在消元过程中起主导作用的元素。消元之后,矩阵中位于主元以下的值都为0,主元的值为都不为0,如下所示(对角线上的值都不为0,注意这里的对角线上的值是指该值在矩阵中的位置行和列坐标相同,而非集合意义中的对角线,主要针对矩阵的行列数不一致的矩阵):
例如:A经过消元后的结果如下:
上边矩阵中1就被称为 主元。
我们将上边的两个矩阵称为上三角矩阵(Upper Triangle)——称为矩阵U。那么矩阵的消元就可以看作通过原矩阵——A,获取到指定矩阵U的过程。而通过这个形式可以很容易的计算行列式——等于各主元的乘积。
2.2:行变换
矩阵的行变换包括:交换矩阵中的任意两行;矩阵的第i行的n倍与第j行的m倍相加作为第j行新的数据。
通过矩阵的形式描述行变换。
首先我们分析我们对矩阵A消元的话,需要执行的步骤有:row 2 = row1 * 3 - row2; row3 = row2*2 - row3。那么根据矩阵的乘法,我们可以将将其转换为如下的矩阵: