Linear Algebra相关知识总结(1)

本文是基于麻省理工线性代数公开课的章节总结,涵盖方程的几何解释、矩阵消元、乘法和逆矩阵、A的LU分解及向量空间等内容。通过不同视角解析线性方程,介绍矩阵的消元法、行变换和列变换,以及矩阵乘法和逆矩阵的概念。同时,讨论了LU分解和向量空间的基本概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Linear Algebra相关知识总结

本分类下的文章是基于麻省理工公开课:线性代数,对课程中的每一个章节做相应的总结。课程一共有35个课时,这里会以5个课时为单位进行总结。该分类总共会写8节,包括7节的章节总结和一节的总概括。

This chapter is summary of video —— MT Open Class : Linear Algebra, which has 35 lessons.I summarize every 5 lessons. There are 8 chapters contains 7 single summary and one completely summary.

一:方程的几何解释

在开始之前,先贴一下本章的核心:
The fundamental problem of linear algebra, which is solve a linear equations.(线性代数的核心是解线性方程)

本节的总结是默认N元方程组有N个方程来看待的。实际的话该条件是不成立的,这里一次为前提是为了便于讲解不同视图下方程的几何意义。

后文的所有总结都是以如下的方程为例的:

{ 2x+y=0x+2y=0

1.1:矩阵视图

[2112][xy]=[03]

根据矩阵的乘法,我们可以通过将上边的公式进行计算,得出前边给的实例方程组。这个就是方程组的矩阵表示形式。我们还可以根据这个推断出N元线性方程的矩阵表示像是如下。这样我们在后续遇到的线性方程组都可以将其转换为矩阵,然后从矩阵的角度去思考问题。这也是线性方程组的一个核心点。

这里我们将从左到右的三个矩阵依次称为系数矩阵——A;位置变量——x;期望值——b。那么我们就会得到我们在后续总结中常见的一个公式Ax=b

1.2: 列视图

x[21]+y[12]=[03]

这个是将方程组的系数以列为单位进行抽离,将列抽象为一个向量。我们将从左到右的三个分别称为向量A、B、C。那么具体的含义就是我们如何将向量A与向量B进行指定的结合生成向量C。

我们可以将向量A、B在直角坐标系中绘制出来,然后绘制出向量C。那么我们就可以在途中大概找到x、y的值。

从该视图看解N元方程的含义就是:在N维坐标系中怎么计算N个N维向量然后得到指定的向量。

1.3:行视图。

行视图最简单,就是将每个方程代表的图形在相应的坐标系中绘制出来即可。本例给的是一个二元方程组,那么视图就是将方程代表的直线在直角坐标系绘制出来。
从该视图看解N元方程组的含义:找到在N维坐标系中,每个方程代表的图形相交的部分。

1.4:总结
从不同的角度讲解了一个方程的含义,从几何的角度讲解求解一个方程组的几何本质以及几何的表示。而这个将会在后续的讲解中起到很重要的作用。是线性代数的基础。

二:矩阵消元

消元法(Elimination)是我们解N元一次方程组最好的方法。 这里主要讲解通过矩阵的形式实现消元法,而这个操作的核心就是矩阵变换(Matrix Operations)。

本节将以如下方程组以及其矩阵形式作为本次总结的事例:
原方程及其矩阵形式如下:

x+2y+z=23x+8y+z=124yz=2130284111xyz=2122 <=>Ax=b

矩阵与向量的乘积是“矩阵列的线性组合”

2.1:主元与消元
在了解消元法之前首先要掌握一个概念——主元(Pivot Element)

百度的解释是主元,说的通俗一点就是,位于矩阵对角线上的都是主元,主元是在消元过程中起主导作用的元素。消元之后,矩阵中位于主元以下的值都为0,主元的值为都不为0,如下所示(对角线上的值都不为0,注意这里的对角线上的值是指该值在矩阵中的位置行和列坐标相同,而非集合意义中的对角线,主要针对矩阵的行列数不一致的矩阵):

X110..0X12X22...0............X1nX2n...Xmn

例如:A经过消元后的结果如下:

100220125

上边矩阵中1就被称为 主元

我们将上边的两个矩阵称为上三角矩阵(Upper Triangle)——称为矩阵U。那么矩阵的消元就可以看作通过原矩阵——A,获取到指定矩阵U的过程。而通过这个形式可以很容易的计算行列式——等于各主元的乘积。

2.2:行变换

矩阵的行变换包括:交换矩阵中的任意两行;矩阵的第i行的n倍与第j行的m倍相加作为第j行新的数据。

通过矩阵的形式描述行变换。
首先我们分析我们对矩阵A消元的话,需要执行的步骤有:row 2 = row1 * 3 - row2; row3 = row2*2 - row3。那么根据矩阵的乘法,我们可以将将其转换为如下的矩阵:

030
About the Author David C. Lay holds a B.A. from Aurora University (Illinois), and an M.A. and Ph.D. from the University of California at Los Angeles. David Lay has been an educator and research mathematician since 1966, mostly at the University of Maryland, College Park. He has also served as a visiting professor at the University of Amsterdam, the Free University in Amsterdam, and the University of Kaiserslautern, Germany. He has published more than 30 research articles on functional analysis and linear algebra. As a founding member of the NSF-sponsored Linear Algebra Curriculum Study Group, David Lay has been a leader in the current movement to modernize the linear algebra curriculum. Lay is also a coauthor of several mathematics texts, including Introduction to Functional Analysis with Angus E. Taylor, Calculus and Its Applications, with L. J. Goldstein and D. I. Schneider, and Linear Algebra Gems–Assets for Undergraduate Mathematics, with D. Carlson, C. R. Johnson, and A. D. Porter. David Lay has received four university awards for teaching excellence, including, in 1996, the title of Distinguished Scholar—Teacher of the University of Maryland. In 1994, he was given one of the Mathematical Association of America’s Awards for Distinguished College or University Teaching of Mathematics. He has been elected by the university students to membership in Alpha Lambda Delta National Scholastic Honor Society and Golden Key National Honor Society. In 1989, Aurora University conferred on him the Outstanding Alumnus award. David Lay is a member of the American Mathematical Society, the Canadian Mathematical Society, the International Linear Algebra Society, the Mathematical Association of America, Sigma Xi, and the Society for Industrial and Applied Mathematics. Since 1992, he has served several terms on the national board of the Association of Christians in the Mathematical Sciences. Steven R. Lay began his teaching career at Aurora University (Illinois) in 1971, after earning an M.A. and a Ph.D. in mathematics from the University of California at Los Angeles. His career in mathematics was interrupted for eight years while serving as a missionary in Japan. Upon his return to the States in 1998, he joined the mathematics faculty at Lee University (Tennessee) and has been there ever since. Since then he has supported his brother David in refining and expanding the scope of this popular linear algebra text, including writing most of Chapters 8 and 9. Steven is also the author of three college-level mathematics texts: Convex Sets and Their Applications, Analysis with an Introduction to Proof, and Principles of Algebra. In 1985, Steven received the Excellence in Teaching Award at Aurora University. He and David, and their father, Dr. L. Clark Lay, are all distinguished mathematicians, and in 1989 they jointly received the Outstanding Alumnus award from their alma mater, Aurora University. In 2006, Steven was honored to receive the Excellence in Scholarship Award at Lee University. He is a member of the American Mathematical Society, the Mathematics Association of America, and the Association of Christians in the Mathematical Sciences. Judi J. McDonald joins the authorship team after working closely with David on the fourth edition. She holds a B.Sc. in Mathematics from the University of Alberta, and an M.A. and Ph.D. from the University of Wisconsin. She is currently a professor at Washington State University. She has been an educator and research mathematician since the early 90s. She has more than 35 publications in linear algebra research journals. Several undergraduate and graduate students have written projects or theses on linear algebra under Judi’s supervision. She has also worked with the mathematics outreach project Math Central http://mathcentral.uregina.ca/ and continues to be passionate about mathematics education and outreach. Judi has received three teaching awards: two Inspiring Teaching awards at the University of Regina, and the Thomas Lutz College of Arts and Sciences Teaching Award at Washington State University. She has been an active member of the International Linear Algebra Society and the Association for Women in Mathematics throughout her career and has also been a member of the Canadian Mathematical Society, the American Mathematical Society, the Mathematical Association of America, and the Society for Industrial and Applied Mathematics.
Contents Preface to the Third Edition, vii Preface to the Second Edition, ix Preface to the First Edition, xi Preliminaries, 1 Part 1: Preliminaries, 1 Part 2: Algebraic Structures, 17 Part I---Basic Linear Algebra, 33 1 Vector Spaces, 35 Vector Spaces, 35 Subspaces, 37 Direct Sums, 40 Spanning Sets and Linear Independence, 44 The Dimension of a Vector Space, 48 Ordered Bases and Coordinate Matrices, 51 The Row and Column Spaces of a Matrix, 52 The Complexification of a Real Vector Space, 53 Exercises, 55 2 Linear Transformations, 59 Linear Transformations, 59 The Kernel and Image of a Linear Transformation, 61 Isomorphisms, 62 The Rank Plus Nullity Theorem, 63 Linear Transformations from to , 64 Change of Basis Matrices, 65 The Matrix of a Linear Transformation, 66 Change of Bases for Linear Transformations, 68 Equivalence of Matrices, 68 Similarity of Matrices, 70 Similarity of Operators, 71 Invariant Subspaces and Reducing Pairs, 72 Projection Operators, 73 xiv Contents Topological Vector Spaces, 79 Linear Operators on , 82 Exercises, 83 3 The Isomorphism Theorems, 87 Quotient Spaces, 87 The Universal Property of Quotients and the First Isomorphism Theorem, 90 Quotient Spaces, Complements and Codimension, 92 Additional Isomorphism Theorems, 93 Linear Functionals, 94 Dual Bases, 96 Reflexivity, 100 Annihilators, 101 Operator Adjoints, 104 Exercises, 106 4 Modules I: Basic Properties, 109 Motivation, 109 Modules, 109 Submodules, 111 Spanning Sets, 112 Linear Independence, 114 Torsion Elements, 115 Annihilators, 115 Free Modules, 116 Homomorphisms, 117 Quotient Modules, 117 The Correspondence and Isomorphism Theorems, 118 Direct Sums and Direct Summands, 119 Modules Are Not as Nice as Vector Spaces, 124 Exercises, 125 5 Modules II: Free and Noetherian Modules, 127 The Rank of a Free Module, 127 Free Modules and Epimorphisms, 132 Noetherian Modules, 132 The Hilbert Basis Theorem, 136 Exercises, 137
线性代数做对了(第三版)》是一本非常经典的线性代数教材。作者是Serge Lang先生,他以其严谨而深入的教学风格而闻名。该教材主要面向高年级本科生或研究生,旨在帮助读者全面理解线性代数的基本概念和方法,并培养他们具备从事相关研究的能力。 在这本书中,作者以严格的数学证明和定义为基础,从最基本的向量空间、线性变换和矩阵开始,逐步介绍了线性方程组、特征值和特征向量、对偶空间等概念。他通过丰富的例题和练习题,帮助读者巩固所学知识,并逐渐培养他们的证明能力。 与其他线性代数教材相比,这本书的一大特点是强调抽象和理论的重要性。作者通过引入向量空间和线性变换的抽象概念,不仅使读者能够更好地理解线性代数的本质,还为读者打下了深入学习更高级数学课程的基础。 此外,书中还对矩阵的性质进行了详细的讨论,并介绍了内积空间、正交性和正交变换等重要内容。这为读者进一步学习和研究与线性代数相关的数学领域,如数值线性代数、线性回归、图像处理等提供了坚实的基础。 总结来说,《线性代数做对了(第三版)》是一本全面且深入的线性代数教材,适合有数学基础的高年级本科生和研究生。它以严格的证明和定义为基础,引导读者逐步深入地理解线性代数的核心概念和方法。通过学习这本书,读者将培养出扎实的数学思维和证明能力,为进一步学习和研究相关领域奠定坚实基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值