C# 人脸识别库 0.1

[next ViewFaceCore 0.2]

.NET 人脸识别库 ViewFaceCore

这是基于 SeetaFace6 人脸识别开发的 .NET 平台下的人脸识别库
这是一个使用超简单的人脸识别库
这是一个基于 .NET Standard 2.0 开发的库
这个库已经发布到 NuGet ,你可以一键集成到你的项目
此项目可以免费商业使用

⭐、开源

开源协议:Apache-2.0
GitHub地址: ViewFaceCore
十分感谢您的小星星

一、示例

示例项目地址:WinForm 摄像头人脸检测
示例项目效果:

 

二、使用

一分钟在你的项目里集成人脸识别

1. 创建你的 .NET 应用

.NET Standard >= 2.0
.NET Core >= 2.0
.NET Framework >= 4.6.1^2


2. 使用 Nuget 安装 ViewFaceCore

  • Author : View
  • Version >= 0.1.1

此 Nuget 包会自动添加依赖的 C++ 库,以及最精简的识别模型。
如果需要其它场景的识别模型,请下载 SeetaFace6 模型文件

3. 在项目中编写你的代码

  • 按照 说明 自己编写
  • 或者参考以下代码

简单的调用示例

ContractedBlock.gif ExpandedBlockStart.gif
 1 static void Main()
 2         {
 3             ViewFace viewFace = new ViewFace((str) => { Debug.WriteLine(str); }); // 初始化人脸识别类,并设置 日志回调函数
 4             viewFace.DetectorSetting = new DetectorSetting() { FaceSize = 20, MaxWidth = 2000, MaxHeight = 2000, Threshold = 0.5 };
 5 
 6             // 系统默认使用的轻量级识别模型。如果对精度有要求,请切换到 Normal 模式;并下载需要模型文件 放入生成目录的 model 文件夹中
 7             viewFace.FaceType = FaceType.Normal;
 8             // 系统默认使用5个人脸关键点。//不建议改动,除非是使用口罩模型。
 9             viewFace.MarkType = MarkType.Light;
10 
11             #region 识别老照片
12             float[] oldEigenValues;
13             Bitmap oldImg = (Bitmap)Image.FromFile(@"C:\Users\yangw\OneDrive\图片\Camera Roll\IMG_20181103_142707.jpg"/*老图片路径*/); // 从文件中加载照片 // 或者视频帧等
14             var oldFaces = viewFace.FaceDetector(oldImg); // 检测图片中包含的人脸信息。(置信度、位置、大小)
15             if (oldFaces.Length > 0) //识别到人脸
16             {
17                 { // 打印人脸信息
18                     Console.WriteLine($"识别到的人脸数量:{oldFaces.Length} 。人脸信息:\n");
19                     Console.WriteLine($"序号\t人脸置信度\t位置X\t位置Y\t宽度\t高度");
20                     for (int i = 0; i < oldFaces.Length; i++)
21                     {
22                         Console.WriteLine($"{i + 1}\t{oldFaces[i].Score}\t{oldFaces[i].Location.X}\t{oldFaces[i].Location.Y}\t{oldFaces[i].Location.Width}\t{oldFaces[i].Location.Height}");
23                     }
24                     Console.WriteLine();
25                 }
26                 var oldPoints = viewFace.FaceMark(oldImg, oldFaces[0]); // 获取 第一个人脸 的识别关键点。(人脸识别的关键点数据)
27                 oldEigenValues = viewFace.Extract(oldImg, oldPoints); // 获取 指定的关键点 的特征值。
28             }
29             else { oldEigenValues = new float[0]; /*未识别到人脸*/ }
30             #endregion
31 
32             #region 识别新照片
33             float[] newEigenValues;
34             Bitmap newImg = (Bitmap)Image.FromFile(@"C:\Users\yangw\OneDrive\图片\Camera Roll\IMG_20181129_224339.jpg"/*新图片路径*/); // 从文件中加载照片 // 或者视频帧等
35             var newFaces = viewFace.FaceDetector(newImg); // 检测图片中包含的人脸信息。(置信度、位置、大小)
36             if (newFaces.Length > 0) //识别到人脸
37             {
38                 { // 打印人脸信息
39                     Console.WriteLine($"识别到的人脸数量:{newFaces.Length} 。人脸信息:\n");
40                     Console.WriteLine($"序号\t人脸置信度\t位置X\t位置Y\t宽度\t高度");
41                     for (int i = 0; i < newFaces.Length; i++)
42                     {
43                         Console.WriteLine($"{i + 1}\t{newFaces[i].Score}\t{newFaces[i].Location.X}\t{newFaces[i].Location.Y}\t{newFaces[i].Location.Width}\t{newFaces[i].Location.Height}");
44                     }
45                     Console.WriteLine();
46                 }
47                 var newPoints = viewFace.FaceMark(newImg, newFaces[0]); // 获取 第一个人脸 的识别关键点。(人脸识别的关键点数据)
48                 newEigenValues = viewFace.Extract(newImg, newPoints); // 获取 指定的关键点 的特征值。
49             }
50             else { newEigenValues = new float[0]; /*未识别到人脸*/ }
51             #endregion
52 
53             try
54             {
55                 float similarity = viewFace.Similarity(oldEigenValues, newEigenValues); // 对比两张照片上的数据,确认是否是同一个人。
56                 Console.WriteLine($"阈值 = {Face.Threshold[viewFace.FaceType]}\t相似度 = {similarity}");
57                 Console.WriteLine($"是否是同一个人:{viewFace.IsSelf(similarity)}");
58             }
59             catch (Exception e)
60             { Console.WriteLine(e); }
61 
62             Console.ReadKey();
63         }
ViewFaceCore 使用示例

 

三、说明

命名空间:ViewFaceCore.Sharp : 人脸识别类所在的命名空间

  • 属性说明:
  • 方法说明:
 
属性名称类型说明默认值
ModelPathstring获取或设置模型路径 [ 如非必要,请勿修改 ]./model/
FaceTypeFaceType获取或设置人脸类型FaceType.Light
MarkTypeMarkType获取或设置人脸关键点类型MarkType.Light
DetectorSettingDetectorSetting获取或设置人脸检测器设置new DetectorSetting()

 

 

 

 

 

 

 

 1 using System.Drawing;
 2 using ViewFaceCore.Sharp;
 3 using ViewFaceCore.Sharp.Model;
 4 
 5 // 识别 bitmap 中的人脸,并返回人脸的信息。
 6 FaceInfo[] FaceDetector(Bitmap);
 7 
 8 // 识别 bitmap 中指定的人脸信息 info 的关键点坐标。
 9 FaceMarkPoint[] FaceMark(Bitmap, FaceInfo);
10 
11 // 提取人脸特征值。
12 float[] Extract(Bitmap, FaceMarkPoint[]);
13 
14 // 计算特征值相似度。
15 float Similarity(float[], float[]);
16 
17 // 判断相似度是否为同一个人。
18 bool IsSelf(float);

四、实现

此项目受到了 SeetaFaceEngine.NET 项目的启发

这个项目本质上来说还是调用了 SeetaFace 的 C++ 类库来实现的人脸识别功能。针对本人遇到过的相关的类库的使用都不太方便,而且使用的 SeetaFace 的版本较老,故萌生了自己重新开发的想法。

本项目在开发完成之后为了方便调用,采用了 Nuget 包的形式,将所有需要的依赖以及最小识别模型一起打包。在使用时非常简单,只需要 nuget 安装,编写代码,运行即可,不需要多余的操作。

首先查看 SeetaFace ,已经更新到了v3(v6即v3)(上面前辈的项目是基于v1开发的),最新版本暂时没有开源,但是可以免费商用。然后是根据以前的经验和 SeetaFace6 文档的指导,以及前辈的项目,做了以下操作。

1.对SeetaFace6 的接口进行了 C++ 形式的封装。

目前主要实现了 人脸检测,关键点提取,特征值提取,特征值对比几个人脸识别中的基础接口。有了这几个接口,可以完整的实现一套人脸识别和验证的流程。

  • c++封装的接口代码如下:
ContractedBlock.gif ExpandedBlockStart.gif
  1 #include "seeta/FaceDetector.h"
  2 #include "seeta/FaceLandmarker.h"
  3 #include "seeta/FaceRecognizer.h"
  4 
  5 #include <time.h>
  6 
  7 #define View_Api extern "C" __declspec(dllexport)
  8 
  9 using namespace std;
 10 
 11 typedef void(_stdcall* LogCallBack)(const char* logText);
 12 
 13 string modelPath = "./model/"; // 模型所在路径
 14 LogCallBack logger = NULL; // 日志回调函数
 15 
 16 // 打印日志
 17 void WriteLog(string str) { if (logger != NULL) { logger(str.c_str()); } }
 18 
 19 void WriteMessage(string fanctionName, string message) { WriteLog(fanctionName + "\t Message:" + message); }
 20 void WriteModelName(string fanctionName, string modelName) { WriteLog(fanctionName + "\t Model.Name:" + modelName); }
 21 void WriteRunTime(string fanctionName, int start) { WriteLog(fanctionName + "\t Run.Time:" + to_string(clock() - start) + " ms"); }
 22 void WriteError(string fanctionName, const std::exception& e) { WriteLog(fanctionName + "\t Error:" + e.what()); }
 23 
 24 // 注册日志回调函数
 25 View_Api void V_SetLogFunction(LogCallBack writeLog)
 26 {
 27     logger = writeLog;
 28     WriteMessage(__FUNCDNAME__, "Successed.");
 29 }
 30 
 31 // 设置人脸模型目录
 32 View_Api void V_SetModelPath(const char* path)
 33 {
 34     modelPath = path;
 35     WriteMessage(__FUNCDNAME__, "Model.Path:" + modelPath);
 36 }
 37 // 获取人脸模型目录
 38 View_Api bool V_GetModelPath(char** path)
 39 {
 40     try
 41     {
 42 #pragma warning(disable:4996)
 43         strcpy(*path, modelPath.c_str());
 44 
 45         return true;
 46     }
 47     catch (const std::exception& e)
 48     {
 49         WriteError(__FUNCDNAME__, e);
 50         return false;
 51     }
 52 }
 53 
 54 seeta::FaceDetector* v_faceDetector = NULL;
 55 
 56 // 人脸检测结果
 57 static SeetaFaceInfoArray detectorInfos;
 58 // 人脸数量检测器
 59 View_Api int V_DetectorSize(unsigned char* imgData, int width, int height, int channels, double faceSize = 20, double threshold = 0.9, double maxWidth = 2000, double maxHeight = 2000, int type = 0)
 60 {
 61     try {
 62         clock_t start = clock();
 63 
 64         SeetaImageData img = { width, height, channels, imgData };
 65         if (v_faceDetector == NULL) {
 66             seeta::ModelSetting setting;
 67             setting.set_device(SEETA_DEVICE_CPU);
 68             string modelName = "face_detector.csta";
 69             switch (type)
 70             {
 71             case 1: modelName = "mask_detector.csta"; break;
 72             }
 73             setting.append(modelPath + modelName);
 74             WriteModelName(__FUNCDNAME__, modelName);
 75             v_faceDetector = new seeta::FaceDetector(setting);
 76         }
 77 
 78         if (faceSize != 20) { v_faceDetector->set(seeta::FaceDetector::Property::PROPERTY_MIN_FACE_SIZE, faceSize); }
 79         if (threshold != 0.9) { v_faceDetector->set(seeta::FaceDetector::Property::PROPERTY_THRESHOLD, threshold); }
 80         if (maxWidth != 2000) { v_faceDetector->set(seeta::FaceDetector::Property::PROPERTY_MAX_IMAGE_WIDTH, maxWidth); }
 81         if (maxHeight != 2000) { v_faceDetector->set(seeta::FaceDetector::Property::PROPERTY_MAX_IMAGE_HEIGHT, maxHeight); }
 82 
 83         auto infos = v_faceDetector->detect(img);
 84         detectorInfos = infos;
 85 
 86         WriteRunTime("V_Detector", start); // 此方法已经是人脸检测的全过程,故计时器显示为 人脸识别方法
 87         return infos.size;
 88     }
 89     catch (const std::exception& e)
 90     {
 91         WriteError(__FUNCDNAME__, e);
 92         return -1;
 93     }
 94 }
 95 // 人脸检测器
 96 View_Api bool V_Detector(float* score, int* x, int* y, int* width, int* height)
 97 {
 98     try
 99     {
100         //clock_t start = clock();
101 
102         for (int i = 0; i < detectorInfos.size; i++, detectorInfos.data++)
103         {
104             *score = detectorInfos.data->score;
105             *x = detectorInfos.data->pos.x;
106             *y = detectorInfos.data->pos.y;
107             *width = detectorInfos.data->pos.width;
108             *height = detectorInfos.data->pos.height;
109             score++, x++, y++, width++, height++;
110         }
111         detectorInfos.data = NULL;
112         detectorInfos.size = NULL;
113 
114         //WriteRunTime(__FUNCDNAME__, start); // 此方法只是将 人脸数量检测器 获取到的数据赋值传递,并不耗时。故不显示此方法的调用时间
115         return true;
116     }
117     catch (const std::exception& e)
118     {
119         WriteError(__FUNCDNAME__, e);
120         return false;
121     }
122 }
123 
124 
125 seeta::FaceLandmarker* v_faceLandmarker = NULL;
126 // 人脸关键点数量
127 View_Api int V_FaceMarkSize(int type = 0)
128 {
129     try
130     {
131         clock_t start = clock();
132 
133         if (v_faceLandmarker == NULL) {
134             seeta::ModelSetting setting;
135             setting.set_device(SEETA_DEVICE_CPU);
136             string modelName = "face_landmarker_pts68.csta";
137             switch (type)
138             {
139             case 1: modelName = "face_landmarker_mask_pts5.csta"; break;
140             case 2: modelName = "face_landmarker_pts5.csta"; break;
141             }
142             setting.append(modelPath + modelName);
143             WriteModelName(__FUNCDNAME__, modelName);
144             v_faceLandmarker = new seeta::FaceLandmarker(setting);
145         }
146         int size = v_faceLandmarker->number();
147 
148         WriteRunTime(__FUNCDNAME__, start);
149         return size;
150     }
151     catch (const std::exception& e)
152     {
153         WriteError(__FUNCDNAME__, e);
154         return -1;
155     }
156 }
157 // 人脸关键点
158 View_Api bool V_FaceMark(unsigned char* imgData, int width, int height, int channels, int x, int y, int fWidth, int fHeight, double* pointX, double* pointY, int type = 0)
159 {
160     try
161     {
162         clock_t start = clock();
163 
164         SeetaImageData img = { width, height, channels, imgData };
165         SeetaRect face = { x, y, fWidth, fHeight };
166         if (v_faceLandmarker == NULL) {
167             seeta::ModelSetting setting;
168             setting.set_device(SEETA_DEVICE_CPU);
169             string modelName = "face_landmarker_pts68.csta";
170             switch (type)
171             {
172             case 1: modelName = "face_landmarker_mask_pts5.csta"; break;
173             case 2: modelName = "face_landmarker_pts5.csta"; break;
174             }
175             setting.append(modelPath + modelName);
176             WriteModelName(__FUNCDNAME__, modelName);
177             v_faceLandmarker = new seeta::FaceLandmarker(setting);
178         }
179         std::vector<SeetaPointF> _points = v_faceLandmarker->mark(img, face);
180 
181         if (!_points.empty()) {
182             for (auto iter = _points.begin(); iter != _points.end(); iter++)
183             {
184                 *pointX = (*iter).x;
185                 *pointY = (*iter).y;
186                 pointX++;
187                 pointY++;
188             }
189 
190             WriteRunTime(__FUNCDNAME__, start);
191             return true;
192         }
193         else { return false; }
194     }
195     catch (const std::exception& e)
196     {
197         WriteError(__FUNCDNAME__, e);
198         return false;
199     }
200 }
201 
202 seeta::FaceRecognizer* v_faceRecognizer = NULL;
203 // 获取人脸特征值长度
204 View_Api int V_ExtractSize(int type = 0)
205 {
206     try
207     {
208         clock_t start = clock();
209 
210         if (v_faceRecognizer == NULL) {
211             seeta::ModelSetting setting;
212             setting.set_id(0);
213             setting.set_device(SEETA_DEVICE_CPU);
214             string modelName = "face_recognizer.csta";
215             switch (type)
216             {
217             case 1: modelName = "face_recognizer_mask.csta"; break;
218             case 2: modelName = "face_recognizer_light.csta"; break;
219             }
220             setting.append(modelPath + modelName);
221             WriteModelName(__FUNCDNAME__, modelName);
222             v_faceRecognizer = new seeta::FaceRecognizer(setting);
223         }
224         int length = v_faceRecognizer->GetExtractFeatureSize();
225 
226         WriteRunTime(__FUNCDNAME__, start);
227         return length;
228     }
229     catch (const std::exception& e)
230     {
231         WriteError(__FUNCDNAME__, e);
232         return -1;
233     }
234 }
235 // 提取人脸特征值
236 View_Api bool V_Extract(unsigned char* imgData, int width, int height, int channels, SeetaPointF* points, float* features, int type = 0)
237 {
238     try
239     {
240         clock_t start = clock();
241 
242         SeetaImageData img = { width, height, channels, imgData };
243         if (v_faceRecognizer == NULL) {
244             seeta::ModelSetting setting;
245             setting.set_id(0);
246             setting.set_device(SEETA_DEVICE_CPU);
247             string modelName = "face_recognizer.csta";
248             switch (type)
249             {
250             case 1: modelName = "face_recognizer_mask.csta"; break;
251             case 2: modelName = "face_recognizer_light.csta"; break;
252             }
253             setting.append(modelPath + modelName);
254             WriteModelName(__FUNCDNAME__, modelName);
255             v_faceRecognizer = new seeta::FaceRecognizer(setting);
256         }
257         int length = v_faceRecognizer->GetExtractFeatureSize();
258         std::shared_ptr<float> _features(new float[v_faceRecognizer->GetExtractFeatureSize()], std::default_delete<float[]>());
259         v_faceRecognizer->Extract(img, points, _features.get());
260 
261         for (int i = 0; i < length; i++)
262         {
263             *features = _features.get()[i];
264             features++;
265         }
266 
267         WriteRunTime(__FUNCDNAME__, start);
268         return true;
269 
270     }
271     catch (const std::exception& e)
272     {
273         WriteError(__FUNCDNAME__, e);
274         return false;
275     }
276 }
277 // 人脸特征值相似度计算
278 View_Api float V_CalculateSimilarity(float* leftFeatures, float* rightFeatures, int type = 0)
279 {
280     try
281     {
282         clock_t start = clock();
283 
284         if (v_faceRecognizer == NULL) {
285             seeta::ModelSetting setting;
286             setting.set_id(0);
287             setting.set_device(SEETA_DEVICE_CPU);
288             string modelName = "face_recognizer.csta";
289             switch (type)
290             {
291             case 1: modelName = "face_recognizer_mask.csta"; break;
292             case 2: modelName = "face_recognizer_light.csta"; break;
293             }
294             setting.append(modelPath + modelName);
295             WriteModelName(__FUNCDNAME__, modelName);
296             v_faceRecognizer = new seeta::FaceRecognizer(setting);
297         }
298 
299         auto similarity = v_faceRecognizer->CalculateSimilarity(leftFeatures, rightFeatures);
300         WriteMessage(__FUNCDNAME__, "Similarity = " + to_string(similarity));
301         WriteRunTime(__FUNCDNAME__, start);
302         return similarity;
303     }
304     catch (const std::exception& e)
305     {
306         WriteError(__FUNCDNAME__, e);
307         return -1;
308     }
309 }
310 
311 // 释放资源
312 View_Api void V_Dispose()
313 {
314     if (v_faceDetector != NULL) delete v_faceDetector;
315     if (v_faceLandmarker != NULL) delete v_faceLandmarker;
316     if (v_faceRecognizer != NULL) delete v_faceRecognizer;
317 }
C++ 封装层

2.采用 C# 对上诉接口进行了导入。

因为C++的项目测CPU架构区分x86和x64,所以C# 层也需要区分架构封装

ContractedBlock.gif ExpandedBlockStart.gif
using System.Runtime.InteropServices;
using System.Text;
using ViewFaceCore.Sharp.Model;

namespace ViewFaceCore.Plus
{
    /// <summary>
    /// 日志回调函数
    /// </summary>
    /// <param name="logText"></param>
    public delegate void LogCallBack(string logText);

    class ViewFacePlus64
    {
        const string LibraryPath = @"FaceLibraries\x64\ViewFace.dll";
        /// <summary>
        /// 设置日志回调函数(用于日志打印)
        /// </summary>
        /// <param name="writeLog"></param>
        [DllImport(LibraryPath, EntryPoint = "V_SetLogFunction", CallingConvention = CallingConvention.Cdecl)]
        public static extern void SetLogFunction(LogCallBack writeLog);

        /// <summary>
        /// 设置人脸模型的目录
        /// </summary>
        /// <param name="path"></param>
        [DllImport(LibraryPath, EntryPoint = "V_SetModelPath", CallingConvention = CallingConvention.Cdecl)]
        private extern static void SetModelPath(byte[] path);
        /// <summary>
        /// 设置人脸模型的目录
        /// </summary>
        /// <param name="path"></param>
        public static void SetModelPath(string path) => SetModelPath(Encoding.UTF8.GetBytes(path));

        /// <summary>
        /// 释放使用的资源
        /// </summary>
        [DllImport(LibraryPath, EntryPoint = "V_Dispose", CallingConvention = CallingConvention.Cdecl)]
        public extern static void ViewDispose();

        /// <summary>
        /// 获取人脸模型的目录
        /// </summary>
        /// <param name="path"></param>
        [DllImport(LibraryPath, EntryPoint = "V_GetModelPath", CallingConvention = CallingConvention.Cdecl)]
        private extern static bool GetModelPathEx(ref string path);
        /// <summary>
        /// 获取人脸模型的目录
        /// </summary>
        public static string GetModelPath() { string path = string.Empty; GetModelPathEx(ref path); return path; }

        /// <summary>
        /// 人脸检测器检测到的人脸数量
        /// </summary>
        /// <param name="imgData"></param>
        /// <param name="width"></param>
        /// <param name="height"></param>
        /// <param name="channels"></param>
        /// <param name="faceSize">最小人脸是人脸检测器常用的一个概念,默认值为20,单位像素。
        /// <para>最小人脸和检测器性能息息相关。主要方面是速度,使用建议上,我们建议在应用范围内,这个值设定的越大越好。SeetaFace采用的是BindingBox Regresion的方式训练的检测器。如果最小人脸参数设置为80的话,从检测能力上,可以将原图缩小的原来的1/4,这样从计算复杂度上,能够比最小人脸设置为20时,提速到16倍。</para>
        /// </param>
        /// <param name="threshold">检测器阈值默认值是0.9,合理范围为[0, 1]。这个值一般不进行调整,除了用来处理一些极端情况。这个值设置的越小,漏检的概率越小,同时误检的概率会提高</param>
        /// <param name="maxWidth">可检测的图像最大宽度。默认值2000。</param>
        /// <param name="maxHeight">可检测的图像最大高度。默认值2000。</param>
        /// <param name="type"></param>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_DetectorSize", CallingConvention = CallingConvention.Cdecl)]
        public extern static int DetectorSize(byte[] imgData, int width, int height, int channels, double faceSize = 20, double threshold = 0.9, double maxWidth = 2000, double maxHeight = 2000, int type = 0);
        /// <summary>
        /// 人脸检测器
        /// <para>调用此方法前必须先调用 <see cref="DetectorSize(byte[], int, int, int, double, double, double, double, int)"/></para>
        /// </summary>
        /// <param name="score">人脸置信度集合</param>
        /// <param name="x">人脸位置集合</param>
        /// <param name="y">人脸位置集合</param>
        /// <param name="width">人脸大小集合</param>
        /// <param name="height">人脸大小集合</param>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_Detector", CallingConvention = CallingConvention.Cdecl)]
        public extern static bool Detector(float[] score, int[] x, int[] y, int[] width, int[] height);

        /// <summary>
        /// 人脸关键点数量
        /// </summary>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_FaceMarkSize", CallingConvention = CallingConvention.Cdecl)]
        public extern static int FaceMarkSize(int type = 0);
        /// <summary>
        /// 人脸关键点
        /// </summary>
        /// <param name="imgData"></param>
        /// <param name="width"></param>
        /// <param name="height"></param>
        /// <param name="channels"></param>
        /// <param name="x"></param>
        /// <param name="y"></param>
        /// <param name="fWidth"></param>
        /// <param name="fHeight"></param>
        /// <param name="pointX"></param>
        /// <param name="pointY"></param>
        /// <param name="type"></param>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_FaceMark", CallingConvention = CallingConvention.Cdecl)]
        public extern static bool FaceMark(byte[] imgData, int width, int height, int channels, int x, int y, int fWidth, int fHeight, double[] pointX, double[] pointY, int type = 0);

        /// <summary>
        /// 提取特征值
        /// </summary>
        /// <param name="imgData"></param>
        /// <param name="width"></param>
        /// <param name="height"></param>
        /// <param name="channels"></param>
        /// <param name="points"></param>
        /// <param name="features"></param>
        /// <param name="type"></param>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_Extract", CallingConvention = CallingConvention.Cdecl)]
        public extern static bool Extract(byte[] imgData, int width, int height, int channels, FaceMarkPoint[] points, float[] features, int type = 0);
        /// <summary>
        /// 特征值大小
        /// </summary>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_ExtractSize", CallingConvention = CallingConvention.Cdecl)]
        public extern static int ExtractSize(int type = 0);

        /// <summary>
        /// 计算相似度
        /// </summary>
        /// <param name="leftFeatures"></param>
        /// <param name="rightFeatures"></param>
        /// <param name="type"></param>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_CalculateSimilarity", CallingConvention = CallingConvention.Cdecl)]
        public extern static float Similarity(float[] leftFeatures, float[] rightFeatures, int type = 0);
    }
    class ViewFacePlus32
    {
        const string LibraryPath = @"FaceLibraries\x86\ViewFace.dll";
        /// <summary>
        /// 设置日志回调函数(用于日志打印)
        /// </summary>
        /// <param name="writeLog"></param>
        [DllImport(LibraryPath, EntryPoint = "V_SetLogFunction", CallingConvention = CallingConvention.Cdecl)]
        public static extern void SetLogFunction(LogCallBack writeLog);

        /// <summary>
        /// 设置人脸模型的目录
        /// </summary>
        /// <param name="path"></param>
        [DllImport(LibraryPath, EntryPoint = "V_SetModelPath", CallingConvention = CallingConvention.Cdecl)]
        private extern static void SetModelPath(byte[] path);
        /// <summary>
        /// 设置人脸模型的目录
        /// </summary>
        /// <param name="path"></param>
        public static void SetModelPath(string path) => SetModelPath(Encoding.UTF8.GetBytes(path));

        /// <summary>
        /// 释放使用的资源
        /// </summary>
        [DllImport(LibraryPath, EntryPoint = "V_Dispose", CallingConvention = CallingConvention.Cdecl)]
        public extern static void ViewDispose();

        /// <summary>
        /// 获取人脸模型的目录
        /// </summary>
        /// <param name="path"></param>
        [DllImport(LibraryPath, EntryPoint = "V_GetModelPath", CallingConvention = CallingConvention.Cdecl)]
        private extern static bool GetModelPathEx(ref string path);
        /// <summary>
        /// 获取人脸模型的目录
        /// </summary>
        public static string GetModelPath() { string path = string.Empty; GetModelPathEx(ref path); return path; }

        /// <summary>
        /// 人脸检测器检测到的人脸数量
        /// </summary>
        /// <param name="imgData"></param>
        /// <param name="width"></param>
        /// <param name="height"></param>
        /// <param name="channels"></param>
        /// <param name="faceSize">最小人脸是人脸检测器常用的一个概念,默认值为20,单位像素。
        /// <para>最小人脸和检测器性能息息相关。主要方面是速度,使用建议上,我们建议在应用范围内,这个值设定的越大越好。SeetaFace采用的是BindingBox Regresion的方式训练的检测器。如果最小人脸参数设置为80的话,从检测能力上,可以将原图缩小的原来的1/4,这样从计算复杂度上,能够比最小人脸设置为20时,提速到16倍。</para>
        /// </param>
        /// <param name="threshold">检测器阈值默认值是0.9,合理范围为[0, 1]。这个值一般不进行调整,除了用来处理一些极端情况。这个值设置的越小,漏检的概率越小,同时误检的概率会提高</param>
        /// <param name="maxWidth">可检测的图像最大宽度。默认值2000。</param>
        /// <param name="maxHeight">可检测的图像最大高度。默认值2000。</param>
        /// <param name="type"></param>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_DetectorSize", CallingConvention = CallingConvention.Cdecl)]
        public extern static int DetectorSize(byte[] imgData, int width, int height, int channels, double faceSize = 20, double threshold = 0.9, double maxWidth = 2000, double maxHeight = 2000, int type = 0);
        /// <summary>
        /// 人脸检测器
        /// <para>调用此方法前必须先调用 <see cref="DetectorSize(byte[], int, int, int, double, double, double, double, int)"/></para>
        /// </summary>
        /// <param name="score">人脸置信度集合</param>
        /// <param name="x">人脸位置集合</param>
        /// <param name="y">人脸位置集合</param>
        /// <param name="width">人脸大小集合</param>
        /// <param name="height">人脸大小集合</param>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_Detector", CallingConvention = CallingConvention.Cdecl)]
        public extern static bool Detector(float[] score, int[] x, int[] y, int[] width, int[] height);

        /// <summary>
        /// 人脸关键点数量
        /// </summary>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_FaceMarkSize", CallingConvention = CallingConvention.Cdecl)]
        public extern static int FaceMarkSize(int type = 0);
        /// <summary>
        /// 人脸关键点
        /// </summary>
        /// <param name="imgData"></param>
        /// <param name="width"></param>
        /// <param name="height"></param>
        /// <param name="channels"></param>
        /// <param name="x"></param>
        /// <param name="y"></param>
        /// <param name="fWidth"></param>
        /// <param name="fHeight"></param>
        /// <param name="pointX"></param>
        /// <param name="pointY"></param>
        /// <param name="type"></param>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_FaceMark", CallingConvention = CallingConvention.Cdecl)]
        public extern static bool FaceMark(byte[] imgData, int width, int height, int channels, int x, int y, int fWidth, int fHeight, double[] pointX, double[] pointY, int type = 0);

        /// <summary>
        /// 提取特征值
        /// </summary>
        /// <param name="imgData"></param>
        /// <param name="width"></param>
        /// <param name="height"></param>
        /// <param name="channels"></param>
        /// <param name="points"></param>
        /// <param name="features"></param>
        /// <param name="type"></param>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_Extract", CallingConvention = CallingConvention.Cdecl)]
        public extern static bool Extract(byte[] imgData, int width, int height, int channels, FaceMarkPoint[] points, float[] features, int type = 0);
        /// <summary>
        /// 特征值大小
        /// </summary>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_ExtractSize", CallingConvention = CallingConvention.Cdecl)]
        public extern static int ExtractSize(int type = 0);

        /// <summary>
        /// 计算相似度
        /// </summary>
        /// <param name="leftFeatures"></param>
        /// <param name="rightFeatures"></param>
        /// <param name="type"></param>
        /// <returns></returns>
        [DllImport(LibraryPath, EntryPoint = "V_CalculateSimilarity", CallingConvention = CallingConvention.Cdecl)]
        public extern static float Similarity(float[] leftFeatures, float[] rightFeatures, int type = 0);
    }
}
C# 导入层

3.采用 C# 的面向对象的封装

因为C#的项目默认都是 AnyCPU,所以为了简化调用,在这一层封装的时候增加了架构判断,当在你的项目中引用的时候,不用做任何修改。

且因为C++的C#导入方法在和原生的C#写法略有差异,且数据的转换和传递比较麻烦,所以类库中对外隐藏了 C# 导入层。并使用大家都更熟悉的C#的面向对象的方式进行进一步的封装和简化。

ContractedBlock.gif ExpandedBlockStart.gif
  1     /// <summary>
  2     /// 人脸识别类
  3     /// </summary>
  4     public class ViewFace
  5     {
  6         bool Platform64 { get; set; } = false;
  7         // <para>需要模型:<see langword=""/></para>
  8 
  9         // ctor
 10         /// <summary>
 11         /// 使用默认的模型目录初始化人脸识别类
 12         /// </summary>
 13         public ViewFace() : this("./model/") { }
 14         /// <summary>
 15         /// 使用指定的模型目录初始化人脸识别类
 16         /// </summary>
 17         /// <param name="modelPath">模型目录</param>
 18         public ViewFace(string modelPath)
 19         {
 20             Platform64 = IntPtr.Size == 8;
 21             if (Platform64)
 22             { ViewFacePlus64.SetModelPath(modelPath); }
 23             else
 24             { ViewFacePlus32.SetModelPath(modelPath); }
 25         }
 26         /// <summary>
 27         /// 使用指定的日志回调函数初始化人脸识别类
 28         /// </summary>
 29         /// <param name="action">日志回调函数</param>
 30         public ViewFace(LogCallBack action) : this("./model/", action) { }
 31         /// <summary>
 32         /// 使用指定的模型目录、日志回调函数初始化人脸识别类
 33         /// </summary>
 34         /// <param name="modelPath">模型目录</param>
 35         /// <param name="action">日志回调函数</param>
 36         public ViewFace(string modelPath, LogCallBack action) : this(modelPath)
 37         {
 38             if (Platform64)
 39             { ViewFacePlus64.SetLogFunction(action); }
 40             else
 41             { ViewFacePlus32.SetLogFunction(action); }
 42         }
 43 
 44         // public property
 45         /// <summary>
 46         /// 获取或设置模型路径
 47         /// </summary>
 48         public string ModelPath
 49         {
 50             get
 51             {
 52                 if (Platform64)
 53                 { return ViewFacePlus64.GetModelPath(); }
 54                 else
 55                 { return ViewFacePlus32.GetModelPath(); }
 56             }
 57             set
 58             {
 59                 if (Platform64)
 60                 { ViewFacePlus64.SetModelPath(value); }
 61                 else
 62                 { ViewFacePlus32.SetModelPath(value); }
 63             }
 64         }
 65         /// <summary>
 66         /// 获取或设置人脸类型
 67         /// <para>
 68         /// <listheader>此属性可影响到以下方法:</listheader><br />
 69         ///<c><see cref="FaceDetector(Bitmap)"/></c><br />
 70         ///<c><see cref="Extract(Bitmap, FaceMarkPoint[])"/></c><br />
 71         ///<c><see cref="Similarity(float[], float[])"/></c><br />
 72         /// </para>
 73         /// </summary>
 74         public FaceType FaceType { get; set; } = FaceType.Light;
 75         /// <summary>
 76         /// 获取或设置人脸关键点类型
 77         /// <para>
 78         /// <listheader>此属性可影响到以下方法:</listheader><br />
 79         ///<c><see cref="FaceMark(Bitmap, FaceInfo)"/></c><br />
 80         /// </para>
 81         /// </summary>
 82         public MarkType MarkType { get; set; } = MarkType.Light;
 83         /// <summary>
 84         /// 获取或设置人脸检测器设置
 85         /// </summary>
 86         public DetectorSetting DetectorSetting { get; set; } = new DetectorSetting();
 87 
 88 
 89         // public method
 90         /// <summary>
 91         /// 识别 <paramref name="bitmap"/> 中的人脸,并返回人脸的信息。
 92         /// <para>
 93         ///<c><see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Normal"/> <see langword="||"/> <see cref="FaceType.Light"/></c> 时, 需要模型:<see langword="face_detector.csta"/><br/>
 94         ///<c><see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Mask"/></c> 时, 需要模型:<see langword="mask_detector.csta"/><br/>
 95         /// </para>
 96         /// </summary>
 97         /// <param name="bitmap">包含人脸的图片</param>
 98         /// <returns></returns>
 99         public FaceInfo[] FaceDetector(Bitmap bitmap)
100         {
101             byte[] bgr = ImageSet.Get24BGRFromBitmap(bitmap, out int width, out int height, out int channels);
102             int size;
103             if (Platform64)
104             { size = ViewFacePlus64.DetectorSize(bgr, width, height, channels, DetectorSetting.FaceSize, DetectorSetting.Threshold, DetectorSetting.MaxWidth, DetectorSetting.MaxHeight, (int)FaceType); }
105             else
106             { size = ViewFacePlus32.DetectorSize(bgr, width, height, channels, DetectorSetting.FaceSize, DetectorSetting.Threshold, DetectorSetting.MaxWidth, DetectorSetting.MaxHeight, (int)FaceType); }
107             float[] _socre = new float[size];
108             int[] _x = new int[size];
109             int[] _y = new int[size];
110             int[] _width = new int[size];
111             int[] _height = new int[size];
112             if (Platform64)
113             { _ = ViewFacePlus64.Detector(_socre, _x, _y, _width, _height); }
114             else
115             { _ = ViewFacePlus32.Detector(_socre, _x, _y, _width, _height); }
116             List<FaceInfo> infos = new List<FaceInfo>();
117             for (int i = 0; i < size; i++)
118             {
119                 infos.Add(new FaceInfo() { Score = _socre[i], Location = new FaceRect() { X = _x[i], Y = _y[i], Width = _width[i], Height = _height[i] } });
120             }
121             return infos.ToArray();
122         }
123 
124         /// <summary>
125         /// 识别 <paramref name="bitmap"/> 中指定的人脸信息 <paramref name="info"/> 的关键点坐标。
126         /// <para>
127         ///<see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Normal"/> 时, 需要模型:<see langword="face_landmarker_pts68.csta"/><br/>
128         ///<see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Mask"/> 时, 需要模型:<see langword="face_landmarker_mask_pts5.csta"/><br/>
129         ///<see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Light"/> 时, 需要模型:<see langword="face_landmarker_pts5.csta"/><br/>
130         /// </para>
131         /// </summary>
132         /// <param name="bitmap">包含人脸的图片</param>
133         /// <param name="info">指定的人脸信息</param>
134         /// <returns></returns>
135         public FaceMarkPoint[] FaceMark(Bitmap bitmap, FaceInfo info)
136         {
137             byte[] bgr = ImageSet.Get24BGRFromBitmap(bitmap, out int width, out int height, out int channels);
138             int size;
139             if (Platform64)
140             { size = ViewFacePlus64.FaceMarkSize((int)MarkType); }
141             else
142             { size = ViewFacePlus32.FaceMarkSize((int)MarkType); }
143             double[] _pointX = new double[size];
144             double[] _pointY = new double[size];
145             bool val;
146             if (Platform64)
147             { val = ViewFacePlus64.FaceMark(bgr, width, height, channels, info.Location.X, info.Location.Y, info.Location.Width, info.Location.Height, _pointX, _pointY, (int)MarkType); }
148             else
149             { val = ViewFacePlus32.FaceMark(bgr, width, height, channels, info.Location.X, info.Location.Y, info.Location.Width, info.Location.Height, _pointX, _pointY, (int)MarkType); }
150             if (val)
151             {
152                 List<FaceMarkPoint> points = new List<FaceMarkPoint>();
153                 for (int i = 0; i < size; i++)
154                 { points.Add(new FaceMarkPoint() { X = _pointX[i], Y = _pointY[i] }); }
155                 return points.ToArray();
156             }
157             else
158             { throw new Exception("人脸关键点获取失败"); }
159         }
160 
161         /// <summary>
162         /// 提取人脸特征值。
163         /// <para>
164         ///<see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Normal"/> 时, 需要模型:<see langword="face_recognizer.csta"/><br/>
165         ///<see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Mask"/> 时, 需要模型:<see langword="face_recognizer_mask.csta"/><br/>
166         ///<see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Light"/> 时, 需要模型:<see langword="face_recognizer_light.csta"/><br/>
167         /// </para>
168         /// </summary>
169         /// <param name="bitmap"></param>
170         /// <param name="points"></param>
171         /// <returns></returns>
172         public float[] Extract(Bitmap bitmap, FaceMarkPoint[] points)
173         {
174             byte[] bgr = ImageSet.Get24BGRFromBitmap(bitmap, out int width, out int height, out int channels);
175             float[] features;
176             if (Platform64)
177             { features = new float[ViewFacePlus64.ExtractSize((int)FaceType)]; }
178             else
179             { features = new float[ViewFacePlus32.ExtractSize((int)FaceType)]; }
180 
181             if (Platform64)
182             { ViewFacePlus64.Extract(bgr, width, height, channels, points, features, (int)FaceType); }
183             else
184             { ViewFacePlus32.Extract(bgr, width, height, channels, points, features, (int)FaceType); }
185             return features;
186         }
187 
188         /// <summary>
189         /// 计算特征值相似度。
190         /// <para>只能计算相同 <see cref="FaceType"/> 计算出的特征值</para>
191         /// <para>
192         ///<see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Normal"/> 时, 需要模型:<see langword="face_recognizer.csta"/><br/>
193         ///<see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Mask"/> 时, 需要模型:<see langword="face_recognizer_mask.csta"/><br/>
194         ///<see cref="FaceType"/> <see langword="="/> <see cref="FaceType.Light"/> 时, 需要模型:<see langword="face_recognizer_light.csta"/><br/>
195         /// </para>
196         /// </summary>
197         /// <exception cref="ArgumentException"/>
198         /// <exception cref="ArgumentNullException"/>
199         /// <param name="leftFeatures"></param>
200         /// <param name="rightFeatures"></param>
201         /// <returns></returns>
202         public float Similarity(float[] leftFeatures, float[] rightFeatures)
203         {
204             if (leftFeatures.Length == 0 || rightFeatures.Length == 0)
205                 throw new ArgumentNullException("参数不能为空", nameof(leftFeatures));
206             if (leftFeatures.Length != rightFeatures.Length)
207                 throw new ArgumentException("两个参数长度不一致");
208 
209 
210             if (Platform64)
211             { return ViewFacePlus64.Similarity(leftFeatures, rightFeatures, (int)FaceType); }
212             else
213             { return ViewFacePlus32.Similarity(leftFeatures, rightFeatures, (int)FaceType); }
214         }
215 
216         /// <summary>
217         /// 判断相似度是否为同一个人。
218         /// </summary>
219         /// <param name="similarity">相似度</param>
220         /// <returns></returns>
221         public bool IsSelf(float similarity) => similarity > Face.Threshold[FaceType];
222 
223         /// <summary>
224         /// 释放资源
225         /// </summary>
226         ~ViewFace()
227         {
228             if (Platform64)
229             { ViewFacePlus64.ViewDispose(); }
230             else
231             { ViewFacePlus32.ViewDispose(); }
232         }
233     }
C# 面向对象层

 

五、也许…

  • 此项目还未实现 SeetaFace6 中的许多特性,也许:

    想起 GitHub 密码,持续更新…
    删除代码仓库跑路…

  • 如果在使用过程中遇到问题,你也许可以:

    在 GitHub 报告Bug
    向我 发送邮件

代码是调用开源SDk的FaceCore关键代码。附件中有详细的接口调用说明 FaceCore人脸识别开放平台 (SERVICE INTERFACE PLATFORM)是基于人脸检测、比对核心业务技术的服务平台。平台可为外部合作伙伴提供基于高精度人脸识别技术为基础的相关服务,例如Api、人脸识别、数据安全等。作为人脸识别的重要开发途径,FaceCore平台将推动各行各业定制、创新、进化,并最终促成新商业文明生态圈的建立。我们的使命是把人脸识别技术、规范等一系列核心技术基础服务,像水、电、煤一样输送给所有需要的合作伙伴、开发者、社区媒体、安全机构和各行各业。帮助社会各界通过使用此平台获得更丰厚的商业价值。 服务器测试接口: /api/hello/ 服务器测试接口,返回服务器当前时间。 人脸比对、识别接口: /api/facecompare/ 根据参数FaceFeature1,FaceFeature2获取两个人脸的相似度。 /api/facedetectcount/ 根据参数FaceImage,获取图像中的人脸数量。 /api/facedetect/ 根据参数FaceImage,获取图像中的人脸、眼睛位置和特征。 /api/urlfacedetect/ 根据参数Url,获取图像中的人脸、眼睛位置和特征。 人脸存储管理接口: /api/personface/similar/ Method:POST;根据参数Feature人脸特征,返回appkey存储的全部人脸相似度。 /api/personface/getall/ Method:GET;返回appkey存储的全部人脸。 /api/personface/{id} Method:GET;返回指定id人脸详细信息。 /api/personface/ Method:POST;添加一个人脸信息。 /api/personface/ Method:PUT;修改一个人脸信息。 /api/personface/{id} Method:DELETE;删除一个人脸信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>