松弛变量(slack variable)与拉格朗日对偶

松弛变量(slack variables)和拉格朗日对偶(Lagrangian duality)是优化理论中的两个重要概念,它们之间有着密切的关系,特别是在线性规划和凸优化中。

松弛变量

松弛变量用于将不等式约束转化为等式约束。在标准的线性规划问题中:

Maximize c T x subject to A x ≤ b x ≥ 0 \begin{align*} \text{Maximize} \quad & c^T x \\ \text{subject to} \quad & Ax \leq b \\ & x \geq 0 \end{align*} Maximizesubject tocTxAxbx0

可以通过引入松弛变量 s ≥ 0 s \geq 0 s0 ,将不等式 A x ≤ b Ax \leq b Axb 转换为等式:

A x + s = b Ax + s = b Ax+s=b

这样,问题就变成了:

Maximize c T x subject to A x + s = b x ≥ 0 ,   s ≥ 0 \begin{align*} \text{Maximize} \quad & c^T x \\ \text{subject to} \quad & Ax + s = b \\ & x \geq 0, \, s \geq 0 \end{align*} Maximizesubject tocTxAx+s=bx0,s0

拉格朗日对偶

拉格朗日对偶是通过引入对偶变量(Lagrange multipliers),将约束优化问题转化为一个对偶问题。对于原始问题(Primal problem):

Minimize f ( x ) subject to g i ( x ) ≤ 0 , i = 1 , … , m h j ( x ) = 0 , j = 1 , … , p \begin{align*} \text{Minimize} \quad & f(x) \\ \text{subject to} \quad & g_i(x) \leq 0, \quad i = 1, \ldots, m \\ & h_j(x) = 0, \quad j = 1, \ldots, p \end{align*} Minimizesubject tof(x)gi(x)0,i=1,,mhj(x)=0,j=1,,p

拉格朗日函数定义为:

L ( x , λ , ν ) = f ( x ) + ∑ i = 1 m λ i g i ( x ) + ∑ j = 1 p ν j h j ( x ) \mathcal{L}(x, \lambda, \nu) = f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^p \nu_j h_j(x) L(x,λ,ν)=f(x)+i=1mλigi(x)+j=1pνjhj(x)

其中, λ i ≥ 0 \lambda_i \geq 0 λi0是不等式约束的拉格朗日乘子,对应于松弛变量的作用。

对偶问题(Dual problem)通过最大化拉格朗日函数的拉格朗日乘子(对偶变量)得到:

Maximize inf ⁡ x L ( x , λ , ν ) subject to λ ≥ 0 \begin{align*} \text{Maximize} \quad & \inf_x \mathcal{L}(x, \lambda, \nu) \\ \text{subject to} \quad & \lambda \geq 0 \end{align*} Maximizesubject toxinfL(x,λ,ν)λ0

关系

  1. 等效性:松弛变量和拉格朗日乘子在某种意义上是等价的。松弛变量将不等式约束转化为等式约束,而拉格朗日乘子通过对偶问题引入,解决这些约束的影响。

  2. 互补性松弛条件:在对偶问题中,拉格朗日乘子与松弛变量一起满足互补性松弛条件(complementary slackness)。例如,如果某个不等式约束 g i ( x ) ≤ 0 g_i(x) \leq 0 gi(x)0 是紧的(即 g i ( x ) = 0 g_i(x) = 0 gi(x)=0 ),那么对应的拉格朗日乘子 λ i \lambda_i λi 可能不为零。反之,如果 g i ( x ) < 0 g_i(x) < 0 gi(x)<0,则 λ i \lambda_i λi 必须为零。

  3. 对偶问题的解释:松弛变量可以看作是原始问题的额外变量,而拉格朗日乘子则是对这些变量的影射。在对偶问题中,我们通过优化这些乘子的值来间接优化原始问题。

总的来说,松弛变量和拉格朗日乘子是处理约束优化问题的两种不同方法,但它们在理论和实践中是紧密相关的。理解它们之间的关系有助于深入掌握优化问题的求解方法和对偶理论。

  • 23
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值