扩欧(解线性同余方程)+逆元

1.求解线性同余方程

定理1: g c d ( a , b ) = g c d ( b , a % b ) gcd(a,b)=gcd(b,a\%b) gcd(a,b)=gcd(b,a%b)

int gcd(int a,int b){
    if(b==0) return a;
    else return gcd(b,a%b);
}//欧几里得算法

定理2: 对于方程 a ∗ x + b ∗ y = c a\ast x+b\ast y=c ax+by=c,该方程等价于 a ∗ x ≡ c   m o d ( b ) a\ast x\equiv c\ mod\left( b\right) axc mod(b),方程有整数解的充分必要条件是: c % g c d ( a , b ) = 0 c\%gcd(a,b)=0 c%gcd(a,b)=0

1.求 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b)通解

因为欧几里得算法结束时变量a存放gcd,变量b存放0,因此此时显然有 a ∗ 1 + b ∗ 0 = gcd ⁡ a\ast 1+b\ast 0=\gcd a1+b0=gcd
我们采用递归求解,由数学知识得到递推公式:(若推不出来,望自学)
{ x 1 = y 2 y 1 = x 2 − ( a / b ) y 2 \begin{cases}x_{1}=y_{2}\\y_{1}=x_{2}-\left( a/b\right) y_{2}\end{cases} {x1=y2y1=x2(a/b)y2
之后通过x2,y2来反推x1,y2即可(就是目前已知递归边界成立时为x=1,y=0,需想办法反推出最初始的x和y)

int exgcd(ll a,ll b,ll &x,ll &y){
    if(!b){x=1, y=0; return a;}
    gc=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return gc;//gc即是gcd(a,b)
}//递归求ax+by=gcd(a,b) 

通解为:
{ x ′ = x + b gcd ⁡ ⋅ k y ′ = y − a gcd ⁡ ⋅ k ( k ∈ Z ) \begin{aligned}\begin{cases}x'=x+\dfrac {b}{\gcd }\cdot k\\ y'=y-\dfrac {a}{\gcd }\cdot k\end{cases}\\ \left( k\in Z\right) \end{aligned} x=x+gcdbky=ygcdak(kZ)

2.求 a ∗ x + b ∗ y = c a\ast x+b\ast y=c ax+by=c通解

根据上述定理,对于方程 a ∗ x + b ∗ y = c a\ast x+b\ast y=c ax+by=c,我们可以先用扩展欧几里得算法求出一组解 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0),使其满足 a x 0 + b y 0 = gcd ⁡ ax_{0}+by_{0}=\gcd ax0+by0=gcd,然后两边同时除以 g c d ( a , b ) gcd(a,b) gcd(a,b),再乘以 c c c,这样就得到了方程:
a ⋅ x 0 ⋅ c g c d ( a , b ) + b ⋅ y 0 ⋅ c g c d ( a , b ) = c \dfrac {a\cdot x_{0}\cdot c}{gcd\left( a,b\right) }+\dfrac {b\cdot y_{0}\cdot c}{gcd\left( a,b\right) }=c gcd(a,b)ax0c+gcd(a,b)by0c=c
我们也就找到了原方程的一组解 ( x , y ) (x,y) (x,y)的表示形式:
( x 0 ⋅ c g c d ( a , b ) , y 0 ⋅ c g c d ( a , b ) ) \left( \dfrac {x_{0}\cdot c}{gcd\left( a,b\right) },\dfrac {y_{0}\cdot c}{gcd\left( a,b\right) }\right) (gcd(a,b)x0c,gcd(a,b)y0c),而且和全部解和 a x 0 + b y 0 = gcd ⁡ ( a , b ) ax_{0}+by_{0}=\gcd(a,b) ax0+by0=gcd(a,b)的通解类似,为:
{ x ′ = x + b gcd ⁡ ⋅ k y ′ = y − a gcd ⁡ ⋅ k ( k ∈ Z ) \begin{aligned}\begin{cases}x'=x+\dfrac {b}{\gcd }\cdot k\\ y'=y-\dfrac {a}{\gcd }\cdot k\end{cases}\\ \left( k\in Z\right) \end{aligned} x=x+gcdbky=ygcdak(kZ)

特例: g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1,且 x 0 , y 0 x_{0},y_{0} x0,y0 a ∗ x + b ∗ y = c a\ast x+b\ast y=c ax+by=c 的一组解,则该方程的任一解可表示为: x = x 0 + b t , y = y 0 − a t x=x_{0}+bt,y=y_{0}-at x=x0+bty=y0at,且对任一整数 t t t,皆成立。

观察全部解的形式,可以求出方程的所有解。但实际问题中,我们往往被要求去求最小非负整数解,也就是求一个特解 x x x,方法为: t = b / g c d ( a , b ) , x = ( x % t + t ) t=b/gcd(a,b),x=(x\%t+t)%t t=b/gcd(a,b)x=(x%t+t)

if(c%gcd(a,b)==0){//判断是否有解
	ll gc=exgcd(a,b,x,y);
	x=c/gc*x;//x0转x
	ll t=b/gc;//求x的周期 
	x=(x%t+t)%t;//x的最小正整数解
	if(c-x*a>=0){//需要保证y也是正整数解 
	    printf("");
	    return 0;
	}
}

3.例题分析:斩杀线计算大师

例题:斩杀线计算大师在这里插入图片描述
思路:枚举所有a卡可能的值,使问题转化为求解二元一次方程

 __gcd(a,b)函数用来求a和b的最大公因数,需要#include<algorithm>

ac代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll gcd(ll a,ll b){
    if(!b)return a;
    return gcd(b,a%b);
}
ll exgcd(ll a,ll b,ll &x,ll &y){
    if(!b){x=1;y=0;return a;}
    int gc=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return gc;
}//递归求ax+by=gcd(a,b)
int main(){
    ll a,b,c,k;
    scanf("%lld%lld%lld%lld",&a,&b,&c,&k);
    ll t=k/c,c1,x,y;
    for(ll i=0;i<=t;i++){
        c1=k-i*c;
        if(c1%gcd(a,b)==0){//判断是否有解
            ll gc=exgcd(a,b,x,y);
            x=c1/gc*x;//x0转x
            ll t=b/gc;//求x的周期 
            x=(x%t+t)%t;//x的最小正整数解
            if(c1-x*a>=0){//注意,x是正整数解但也要保证y是正整数解 
                printf("%lld %lld %lld",x,(c1-x*a)/b,i);
                return 0;
            }
        }
    }
    return 0;
}

2.逆元:

1.定义

假设 a 、 b 、 m a、b、m abm 是整数, m > 1 m>1 m>1,且有 a b ≡ 1 ( m o d   m ) ab≡1(mod\ m) ab1(mod m) 成立,那么就说 a a a b b b 互为模 m m m 的逆元,一般也记作 a ≡ 1 / b ( m o d   m ) a≡1/b(mod\ m) a1/b(mod m) b ≡ 1 / a ( m o d   m ) b≡1/a(mod\ m) b1/a(mod m) 。通俗地说,如果两个整数的乘积模 m m m 后等于 1 1 1 ,就称它们互为 m m m 的逆元

逆元用处:

对乘法来说有 ( b × a ) % m = (( b % m )( a % m ) % m (b×a)\%m=((b\%m)(a\%m)\%m b×a%m=((b%m)(a%m%m
成立,但是对除法来说, ( b / a ) % m = (( b % m ) / ( a % m )) % m (b/a)\%m=((b\%m)/(a\%m))\%m b/a%m=((b%m/a%m))%m
却不成立, ( b / a ) % m = (( b % m ) / a ) % m (b/a)\%m=((b\%m)/a)\%m b/a%m=((b%m/a%m也不成立,这时就需要逆元来计算 ( b / a ) % m (b/a)\%m b/a%m
通过找到 a a a m m m 的逆元,就有 ( b / a ) % m = ( b ∗ x ) % m (b/a)\%m=(b*x)\%m b/a%m=bx%m成立 (证明过程略)

只考虑整数取模,也即假设 b % a = 0 b\%a=0 b%a=0,即b是a的整数倍,于是就把除法取模转化为乘法取模,这对于解决被除数b非常大(使得b已经取过模,不是原始值)的问题来说是非常实用的。

逆元的含义: n n n意义下,一个数 a a a如果有逆元 x x x,那么除以 a a a相当于乘以 x x x

由定义知,求 a a a m m m的逆元,就是求解同余式 a x ≡ 1 ( m o d   m ) ax≡1(mod\ m) ax1(mod m),并且在实际使用中,一般把 x x x最小正整数解称为 a a a m m m的逆元,因此逆元经常被默认为 x x x的最小正整数解。

2.扩欧求解

显然,同余式 a x ≡ 1 ( m o d   m ) ax≡1(mod\ m) ax1(mod m)是否有解取决于 1 % g c d ( a , m ) 1\%gcd(a,m) 1%gcd(a,m)是否为0,而这等价于 g c d ( a , m ) gcd(a,m) gcd(a,m)是否为1:

①如果 g c d ( a , m ) ≠ 1 gcd(a,m)≠1 gcd(a,m)=1,那么同余式 a x ≡ 1 ( m o d   m ) ax≡1(mod\ m) ax1(mod m)无解, a a a不存在模 m m m的逆元。
②如果 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1,那么同余式 a x ≡ 1 ( m o d   m ) ax≡1(mod\ m) ax1(mod m) ( 0 , m ) (0,m) (0,m)上有唯一解,可以通过求解 a x + m y = 1 ax+my=1 ax+my=1得到。

注意:由于 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1,因此 a x + m y = 1 = g c d ( a , m ) ax+my=1=gcd(a,m) ax+my=1=gcd(a,m),直接使用扩展欧几里得算法解出 x x x之后就可以用 ( x % m + m ) % m (x\%m+m)\%m (x%m+m)%m得到 ( 0 , m ) (0,m) (0,m)范围内的解,也就是所需要的逆元。
下面的代码使用了扩展欧几里得算法来求解 a a a m m m的逆元,使用条件是 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1
我们不关心 m m m是不是素数

int exgcd(ll a,ll b,ll &x,ll &y){
    if(!b){x=1, y=0; return a;}
    gc=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return gc;//gc即是gcd(a,b)
}//递归求ax+by=gcd(a,b) 
int inv(int a,int m){
    int x,y;
    int g=exgcd(a,m,x,y);//求ax+my=1 
    return (x%m+m)%m;//得到(0,m)范围内的解 
}//求逆元

3.费马小定理求解

费马小定理: m m m是素数, a a a是任意整数且 a ≢ 0 ( m o d   m ) a\not \equiv 0\left( mod\ m\right) a0(mod m),则 a m − 1 ≡ 1 ( m o d   m ) a^{m-1}\equiv 1\left( mod\ m\right) am11(mod m)

在此借鉴大佬的解释了(神崎兰子
在这里插入图片描述

4.例题分析:抽卡

例题:抽卡
在这里插入图片描述
分析:

先求出全部抽完都没有想要的卡的概率,然后用1减去这个概率就可以了,全过程通过逆元把分数当成整数进行运算即可。

#include<bits/stdc++.h>
#define mod 1000000007
//int的最大值为2147483647 
using namespace std;
int n,a[100005],b[100005],ans;
int read(){
    int x=0;char ch=getchar();
    while(!isdigit(ch)) ch=getchar();
    while(isdigit(ch)) x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
    return x;
}
int ksm(int x,int y){
    int res=1;
    while(y){
        if(y&1) res=1ll*res*x%mod;
        x=1ll*x*x%mod;
        y/=2;
    }
    return res;
}
int main(){
    n=read();
    for(int i=1;i<=n;i++) a[i]=read();//分母 
    for(int i=1;i<=n;i++) b[i]=read(),b[i]=a[i]-b[i];//分子 
    ans=1;
    for(int i=1;i<=n;i++) ans=1ll*ans*b[i]%mod*ksm(a[i],mod-2)%mod;
    printf("%d\n",(mod+1-ans)%mod);//确保非负 
    return 0;
}
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值