LeetCode 盛最多水的容器 双指针

文章介绍了如何使用双指针策略在LeetCode题目中解决给定整数数组`height`找到两条线构成的容器能容纳的最大水量问题,通过不断调整较小高度的指针来优化算法,实现时间复杂度为O(n)。
摘要由CSDN通过智能技术生成

原题链接:

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

题面:

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

示例 1:

输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例 2:

输入:height = [1,1]
输出:1

提示:

  • n == height.length
  • 2 <= n <= 10^5
  • 0 <= height[i] <= 10^4

解题思路:

如果使用最朴素的做法,两层for循环分别枚举左端点和右端点,那么一定会超时,考虑使用双指针,达到O(n)的复杂度。

由于容纳的水量是由两个指针指向的数字中较小值∗指针之间的距离决定的。如果我们移动数字较大的那个指针,那么前者「两个指针指向的数字中较小值」不会增加,后者「指针之间的距离」会减小,那么这个乘积会减小。因此,我们移动数字较大的那个指针是不合理的。因此,我们移动 数字较小的那个指针。这是符合直觉的。

代码(CPP):

class Solution {
public:
    int maxArea(vector<int>& height) {
        int n = height.size();
        int ans = 0;
        int l = 0, r = n - 1;
        while (l < r) {
            int area = (min(height[l], height[r])) * (r - l);
            ans = max(ans, area);
            if (height[l] > height[r]) {
                r--;
            } else {
                l++;
            }
        }
        return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值