LeetCode 盛最多水的容器

盛最多水的容器


题目来源:https://leetcode-cn.com/problems/container-with-most-water/

题目


给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。

图片来源于 LeetCode

图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例:

输入: [1,8,6,2,5,4,8,3,7]
输出: 49

解题思路


  1. 采用双指针的方法;
  2. 定义最大值 max_area 用以比较确定最终最大值。定义双指针,一个指向开始,一个指向末尾;
  3. 双指针向两边靠拢,靠拢的准则:指针指向的线较短部分往较长的线那边移动。具体的原因是:距离确定,最终盛放的容量大小由较短的线决定,若往较长线移动,移动后指针指向的线若变长,虽然距离变短,当仍有可能与距离乘积比前面定义的 max_area 的值大(也就是盛放的容量变大);
  4. 两个指针重合退出循环,返回最终确定的最大值 max_area

下图是对指针靠拢以及容器容量变化的图解(第一次制作,有点糙 Orz)

动图图解

代码实现


class Solution:
    def maxArea(self, height: List[int]) -> int:
        # 定义最大值,用以后续比较
        # 定义双指针,一个指向开始,一个指向末尾
        max_area, l, r = 0, 0, len(height) - 1
        # 双指针向中间靠拢
        while l < r:
            # 以较短的线为准,与两线之间的距离之积就是可盛放水量的值
            # 与定义的最大值 max_area 比较,取大值重新赋值给 max_area
            max_area = max(max_area, min(height[l], height[r]) * (r - l))
            # 每次移动的准则:较短的线往较长线的靠拢
            # 具体原因:往较长线移动,移动后的线若变长,虽然距离变短,当仍有可能与距离乘积变大(也就是盛放的容量变大)
            if height[l] < height[r]:
                l += 1
            else:
                r -= 1
        return max_area

实现结果


Container_with_most_water_submissions


以上就是本篇的主要内容


欢迎关注微信公众号《书所集录》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值