Pandas基础学习 Task01:Pandas基础(知识梳理脑图+全部资源教程)

Pandas基础学习

本次跟随Datawhale组队学习Pandas基础,希望能有所收获。Datawhale是一个很好的开源组织,会组织很多免费的知识学习。

附上本次组队学习的计划和教程资料,即使没有当时加入组队学习,有兴趣的话从现在开始学习也不晚哦~

现在学习喜欢用脑图的方式,知识点清晰明了,易于查找和复习,希望也可以帮助大家梳理知识脉络。

Pandas基础学习(上)
Task01:Pandas基础
Task02:索引
Task03:分组
Task04:变形
Task05:合并
Task06:综合练习
Pandas基础学习(下)

一、Task01:Pandas基础

在这里插入图片描述
链接:https://pan.baidu.com/s/1J7oD6gnHzRF8xEk6DDpsHg
提取码:xqvt

二、问题与练习

1、问题

【问题一】 Series和DataFrame有哪些常见属性和方法?
Series

  • 常见属性:index(索引)、value(值)、name(名字)、dtype(数据类型)
  • 常见方法:nunique()、unipue()、count()、value_counts()、idxmax()、nlargest()、clip()、replace()、apply()、

DataFrame

  • 常见属性:index(索引)、value(值)、columns(列标签)、shape(行列数)
  • 常见方法:head()、tail()、describe()、info()、replace()、apply()、sort_values()

【问题二】 value_counts会统计缺失值吗?
不会,只会统计非缺失值元素的数量。

【问题三】 与idxmax和nlargest功能相反的是哪两组函数?
是idxmin和nsmallest。

【问题四】 在常用函数一节中,由于一些函数的功能比较简单,因此没有列入,现在将它们列在下面,请分别说明它们的用途并尝试使用。
以下面为例:在这里插入图片描述
sum:返回各列之和(或某Series的和,后文省略)。
在这里插入图片描述
mean:返回数值型各列的平均值。
在这里插入图片描述
median:返回数值型各列的中位数。
在这里插入图片描述
mad:返回数值型各列的平均绝对离差。
在这里插入图片描述
min:返回各列的最小元素。
在这里插入图片描述
max:返回各列的最大元素。
在这里插入图片描述
abs:返回数值型某列的绝对值。
std:返回数值型各列的标准差。
在这里插入图片描述
var:返回数值型各列的方差。
在这里插入图片描述
quantile:返回数值型各列的分位数(可设定几分位,默认50%)。
在这里插入图片描述
cummax:返回累计最大值。
在这里插入图片描述
cumsum:返回累加和。
在这里插入图片描述
cumprod:返回累乘。
在这里插入图片描述
【问题五】 df.mean(axis=1)是什么意思?它与df.mean()的结果一样吗?第一问提到的函数也有axis参数吗?怎么使用?
df.mean(axis=1)是指在行方向上求平均值,与df.mean()的结果不一样,df.mean()与df.mean(axis=0)结果相同。
从官方文档可以看到 axis 有两个取值:index (0), columns (1),是指函数功能应用在行方向(0)或列方向(1)上。
在这里插入图片描述

2、练习

【练习一】 现有一份关于美剧《权力的游戏》剧本的数据集,请解决以下问题:
(a)在所有的数据中,一共出现了多少人物?
在这里插入图片描述
(b)以单元格计数(即简单把一个单元格视作一句),谁说了最多的话?
在这里插入图片描述
(c)以单词计数,谁说了最多的单词?
在这里插入图片描述
【练习二】现有一份关于科比的投篮数据集,请解决如下问题:
(a)哪种action_type和combined_shot_type的组合是最多的?
在这里插入图片描述
(b)在所有被记录的game_id中,遭遇到最多的opponent是一个支?
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值