提示:没写完呢
文章目录
目标
研究整活时选择buff的优先度,同时写下观看文末视频时想到的东西
前置条件
已知:
- 反甲可以触发吸血、毒质变[1]
- 毒质变可以出发吸血[1]
- 反甲吃伤害buff
- 伤害buff是累加计算,伤害buff作用于所有来着己方的普攻与技能
- 毒质变不吃伤害buff(毒是给对方套上个持续掉血的debuff)
- buff位只有5个
- 吸血只能回血,不能回护盾
- 反甲为三连升级,选到的几率为1/4
假设:
- 不考虑己方毒质变与敌方反甲的互动
- 每100%额外最大生命近似提升
x
1
x_{1}
x1%部队实际质量
每100%额外最大攻击近似提升 x 2 x_{2} x2%部队实际质量
且 x 1 < x 1 x_{1}<x_{1} x1<x1 ? - 不考虑sttm等特殊情况,反甲最多1个,吸血最多2个,毒由于无法叠加计1个,虚空投影最多1个,内在潜力最多1个(?),灼热打击最多2个。
- 双方总共至少1.5w战力,至多6w战力,战力多的一方战力最多为弱者的1.5倍
- 我方吃满buff的卡至少1w战力
- 在其他玩家中没有拟态虫、白球
其他默认事项:
- 5个buff位全放满
- 反甲吸血的 联合效果表现为增加血量上限
设反甲率*吸血率*伤害提升率=a,
即每掉1滴血,就会回a滴血
设提高血量上限的比率为k
则k = ∑ n = 1 ∞ a n = lim n → ∞ ( a − a n ) / ( 1 − a ) = a / ( 1 − a ) \sum_{n=1}^{\infty}a^{n} = \lim_{n\rightarrow \infty} (a-a^{n})/(1-a) = a/(1-a) ∑n=1∞an=limn→∞(a−an)/(1−a)=a/(1−a)
零、先排除掉被完爆的情况
全部组合
- 反甲+4伤害
- 毒+4伤害
- 1吸血+4伤害
- 2吸血+3伤害
- 反甲+毒+3伤害
- 反甲+1吸血+3伤害
- 毒+1吸血+3伤害
- 反甲+2吸血+2伤害
- 反甲+1吸血+毒+2伤害
- 毒+2吸血+2伤害
- 反甲+2吸血+毒+1伤害
一定被完爆的:
-
毒+伤害。
二者没有配合
-
有吸血的前提下 1内潜> 1虚空 >2灼热
我主观上认为会被完爆的:
-
1~2吸血+伤害:
在高战力的时候兵会被集火秒杀,吸血没有作用。 在低战力的情况下,如果敌人输出不足,且我方后排为精英刺蛇、ntr等优质单位时,才会有显著作用。 且此时必定有至少1灼热打击,应将其替换为反甲 此组合<吸血+反甲+伤害
-
1~2 吸血+毒+伤害
由于毒与伤害没有联动,实际效果可等价为吸血+伤害
剩余组合
- 反甲+4伤害
毒+4伤害1吸血+4伤害2吸血+3伤害- 反甲+毒+3伤害
- 反甲+1吸血+3伤害
毒+1吸血+3伤害- 反甲+2吸血+2伤害
- 反甲+1吸血+毒+2伤害
毒+2吸血+2伤害- 反甲+2吸血+毒+1伤害
一、初步分析
此时发现所有组合均有反甲,这显然符合我们的预期,毕竟我们就是要玩反甲。
为什么会导致这个结果呢,因为我给出的全部组合中,没有攻速、射程,这会导致伤害的收益下降反甲的收益上升。
而为了触发反甲,我们就不能选躲在后面的单位,应该是近战或者短手
二、反甲后 毒 与 伤害 的优先度
毒与伤害
三、反甲+
四、反甲+2吸血+毒+1伤害
总结
结论:
误差分析:
- 不知道酒馆里对小数的保留
参考文献
[1]视频:Lauliang-beta 反甲 毒质变 吸血之间的互动【酒馆测试】