星际酒馆反甲、吸血、毒质变、伤害buff的分析

提示:没写完呢


目标

研究整活时选择buff的优先度,同时写下观看文末视频时想到的东西

前置条件

已知:

  • 反甲可以触发吸血、毒质变[1]
  • 毒质变可以出发吸血[1]
  • 反甲吃伤害buff
  • 伤害buff是累加计算,伤害buff作用于所有来着己方的普攻与技能
  • 毒质变不吃伤害buff(毒是给对方套上个持续掉血的debuff)
  • buff位只有5个
  • 吸血只能回血,不能回护盾
  • 反甲为三连升级,选到的几率为1/4

假设:

  • 不考虑己方毒质变与敌方反甲的互动
  • 每100%额外最大生命近似提升 x 1 x_{1} x1%部队实际质量
    每100%额外最大攻击近似提升 x 2 x_{2} x2%部队实际质量
    x 1 < x 1 x_{1}<x_{1} x1<x1
  • 不考虑sttm等特殊情况,反甲最多1个,吸血最多2个,毒由于无法叠加计1个,虚空投影最多1个,内在潜力最多1个(?),灼热打击最多2个。
  • 双方总共至少1.5w战力,至多6w战力,战力多的一方战力最多为弱者的1.5倍
  • 我方吃满buff的卡至少1w战力
  • 在其他玩家中没有拟态虫、白球

其他默认事项:

  • 5个buff位全放满
  • 反甲吸血的 联合效果表现为增加血量上限
    设反甲率*吸血率*伤害提升率=a,
    即每掉1滴血,就会回a滴血
    设提高血量上限的比率为k
    则k = ∑ n = 1 ∞ a n = lim ⁡ n → ∞ ( a − a n ) / ( 1 − a ) = a / ( 1 − a ) \sum_{n=1}^{\infty}a^{n} = \lim_{n\rightarrow \infty} (a-a^{n})/(1-a) = a/(1-a) n=1an=limn(aan)/(1a)=a/(1a)

零、先排除掉被完爆的情况

在这里插入图片描述

全部组合

  1. 反甲+4伤害
  2. 毒+4伤害
  3. 1吸血+4伤害
  4. 2吸血+3伤害
  5. 反甲+毒+3伤害
  6. 反甲+1吸血+3伤害
  7. 毒+1吸血+3伤害
  8. 反甲+2吸血+2伤害
  9. 反甲+1吸血+毒+2伤害
  10. 毒+2吸血+2伤害
  11. 反甲+2吸血+毒+1伤害

一定被完爆的:

  1. 毒+伤害。

    二者没有配合
    
  2. 有吸血的前提下 1内潜> 1虚空 >2灼热

我主观上认为会被完爆的:

  1. 1~2吸血+伤害:

    在高战力的时候兵会被集火秒杀,吸血没有作用。
    在低战力的情况下,如果敌人输出不足,且我方后排为精英刺蛇、ntr等优质单位时,才会有显著作用。
    且此时必定有至少1灼热打击,应将其替换为反甲
    此组合<吸血+反甲+伤害
    
  2. 1~2 吸血+毒+伤害

    由于毒与伤害没有联动,实际效果可等价为吸血+伤害
    

剩余组合

  1. 反甲+4伤害
  2. 毒+4伤害
  3. 1吸血+4伤害
  4. 2吸血+3伤害
  5. 反甲+毒+3伤害
  6. 反甲+1吸血+3伤害
  7. 毒+1吸血+3伤害
  8. 反甲+2吸血+2伤害
  9. 反甲+1吸血+毒+2伤害
  10. 毒+2吸血+2伤害
  11. 反甲+2吸血+毒+1伤害

一、初步分析

此时发现所有组合均有反甲,这显然符合我们的预期,毕竟我们就是要玩反甲。
为什么会导致这个结果呢,因为我给出的全部组合中,没有攻速、射程,这会导致伤害的收益下降反甲的收益上升。
而为了触发反甲,我们就不能选躲在后面的单位,应该是近战或者短手

二、反甲后 毒 与 伤害 的优先度

毒与伤害

三、反甲+

四、反甲+2吸血+毒+1伤害

总结

结论:
误差分析:

  1. 不知道酒馆里对小数的保留

参考文献

[1]视频:Lauliang-beta 反甲 毒质变 吸血之间的互动【酒馆测试】

没写完呢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值