高等数学重要考点

一、极限计算类型

1. 基本型

  1. 直接代入型
  2. 分母为0,可约分型
  3. 分母为0,不可约分型
  4. 趋于无穷大型

2. 两个重要极限

  1. lim ⁡ x → 0 s i n x x = 1 \lim_{x \to 0}\frac{sinx}{x} = 1 limx0xsinx=1
  2. lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim_{x \to 0}(1+x)^{\frac{1}{x}} = e limx0(1+x)x1=e 或者 lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty }(1 + \frac{1}{x})^{x} = e limx(1+x1)x=e

3. 等价代换

4. 洛必达法则

  1. 0比0型 或 无穷比无穷型

二、导数

dy 是微分 dy = y求导 * dx
在这里插入图片描述

对分式求导:(分子导数乘以分母–分母导数乘以分子)/分母的平方
积分和求导互为逆运算

1. 求导类型

  • 求导公式
  • 符合函数求导
  • 乘法、除法
  • 特殊求导(高级导数、隐函数求导、对数求导法)
    对数求导法例题
    在这里插入图片描述

2. 导数的应用

  • 求切线和法线方程
  • 单调性(一阶导数大于0,函数单调增,一阶导数小于0,单调减)
  • 极值(先增后减极大值,先减后增极小值,二阶导数大于0,有极小值,二阶导数小于0,有极大值)
  • 最值
  • 拐点(二阶导数为0的点)
  • 凹凸区间(二阶导数大于0,凹区间,二阶导数小于0,凸区间)
  • 应用题

注意:切线就是对函数进行求导,切线和法线互为负倒数。

三、积分方法

1. 常用积分公式

在这里插入图片描述
在这里插入图片描述

2. 第一类换元法(凑微分法)

3. 第二类换元法

4. 分部积分法

注意:奇函数在对称区间内积分为0

四、多元函数

1. 偏导数

对谁求偏导,谁就是变量,其他的一律按照常数来计算
在这里插入图片描述

2. 全微分

3. 隐函数求导

二元函数极值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值