文本挖掘(超详细:数据获取 - 数据清洗 - 中文分词 - 去除停用词 - 词频统计 - 词云图 - 情感分析)

文本挖掘(超详细)

朋友们好,文本挖掘这篇文章写了也有一段时间了,承蒙朋友们的厚爱,作者后面有做过一个升级版的文本挖掘,但苦于没有时间一直没有更新,现在在抽时间把后面写的这个也发布出来,两篇文章的步骤可能并不一致,但也许能给大家的学习带来帮助。另外,两篇文章的部分资源都是需要些许积分的,仅仅是因为作者也需要积分学习哈,希望大家不要介意呐~
文本挖掘(爬虫 - 预处理 - 特征词提取 - 特征词聚类 - 特征词情感)

工具:八爪鱼采集器 + Python + JavaScript
例如:数据获取 - 数据清洗 - 中文分词 - 去除停用词 - 词频统计 - 词云图 - 情感分析

数据获取

工具:八爪鱼采集器
链接:下载

使用:
1、 下载压缩包并解压
2、 点击 .exe 文件安装
3、 使用模板采集数据/自定义配置采集数据

示例:
1、 选择模板
2、打开商品详情页并复制网址 3、启动采集(共 1000 条数据) 4、采集结果(只保留了 4 列)

数据清洗

简单的数据清洗:把评论内容复制放到一个 Word 文档中,通过文本的 查找与替换 功能去除京东的评论模板文本。

Before:
After:

中文分词

工具:Python + VS Code 软件

VS Code 配置 Python 环境:自行搜索

代码:
import jieba
import jieba.analyse

# 待分词的文本路径
sourceTxt = 'comment_1.txt'
# 分好词后的文本路径
targetTxt = 'comment_1_fenci.txt'

# 对文本进行操作
with open(sourceTxt, 'r', encoding = 'utf-8') as sourceFile, open(targetTxt, 'a+', encoding = 'utf-8') as targetFile:
    for line in sourceFile:
        seg = jieba.cut(line.strip(), cut_all = False)
        # 分好词之后之间用空格隔断
        output = ' '.join(seg)
        targetFile.write(output)
        targetFile.write('\n')
    prinf('写入成功!')

# 提取关键词
with open(targetTxt, 'r', encoding = 'utf-8') as 
评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值