HDU 1285/2647/1811 拓扑排序

今天学习了拓扑排序算法,做了三道相关题目。

一、1285 确定比赛名次

一道纯拓扑排序,很简单,代码中有注释。

#include <iostream>
#include <vector>
#include <queue>
#include <stdio.h>
#include <string.h>
using namespace std;
//HDU	Accepted	1285	15MS	1440K	1051 B	G++
int n, m, a, b;
int indegree[505];
vector<int> G[505];  //邻接表 
priority_queue<int, vector<int>, greater<int> > Q;  //因为输出顺序从小到大,所以使用优先队列 

int main() {
	while(~scanf("%d%d", &n, &m)) {
		//init
		memset(indegree, 0, sizeof(indegree));
		for(int i=0; i<505; i++)
			G[i].clear();
		for(int i=0; i<m; i++) {
			scanf("%d%d", &a, &b);
			G[a].push_back(b);
			indegree[b]++;
		}
		//C++中的queue自身是不支持clear操作,因此手动清空 
		while(!Q.empty())	Q.pop();
		//统计所有节点的入度,把入度为0的加入队列Q
		for(int i=1; i<=n; i++)
			if(indegree[i] == 0)
				Q.push(i);
		bool flag = 1;
		while(!Q.empty()) {
			int cur = Q.top();
			if(flag) {
				printf("%d", cur);
				flag = 0;
			}
			else
				printf(" %d", cur);
			Q.pop();
			//把与节点cur相邻的节点入度减1,一共 G[cur].size()个 
			for(int i=0; i<G[cur].size(); i++) {
				indegree[G[cur][i]]--;
				if(indegree[G[cur][i]] == 0)
					Q.push(G[cur][i]);
			}
		}
		printf("\n");
	}

	return 0;
}
二、2647 Reward

这个题和上一题不同之处在于,它需要判断是否成环以及需要加上节点层数的信息。对于这两点,具体实现方式如下:

  • 判断是否成环:引入cnt变量,每次出队就加1,如果最后不等于节点数,则说明有环
  • 节点层数的信息:代码中使用cost数组记录,首先入度为0的节点,cost为0,代表第0层。在后续出队过程中,若发现有新的节点因为当前节点的出队 入度变为0了,则它的cost值为当前这个节点的cost值加1。实现的时候注意要把整个图反过来。

AC代码:

#include <iostream>
#include <vector>
#include <queue>
#include <stdio.h>
using namespace std;
//HDU	Accepted	2647	31MS	1920K	1138 B	G++ 
int n, m, a, b;
int indegree[10005];
int cost[10005];
vector<int> G[10005];
queue<int> Q; 

int main() {
	while(~scanf("%d%d", &n, &m)) {
		//init
		for(int i=0; i<10005; i++) {
			G[i].clear();
			indegree[i] = 0;
			cost[i] = 0;
		}
		//input & store
		for(int i=0; i<m; i++) {
			scanf("%d%d", &a, &b);
			//a要比b多,而我们希望初始入度为0的点获得888,第k层的节点获得888+k元 。则 b-> a
			G[b].push_back(a);
			indegree[a]++;
		}
		//清空队列
		while(!Q.empty())	Q.pop();
		//统计入度为0的节点
		for(int i=1; i<=n; i++) {
			if(indegree[i] == 0) {
				Q.push(i);
				cost[i] = 0;
			}
		}
		int cnt = 0;
		while(!Q.empty()) {
			int cur = Q.front();
			cnt++;
			Q.pop();
			//与cur相邻的节点入度减1
			for(int i=0; i<G[cur].size(); i++) {
				indegree[G[cur][i]]--;
				if(indegree[G[cur][i]] == 0) {
					Q.push(G[cur][i]);
					cost[G[cur][i]] = cost[cur] + 1;
				}
			} 
		}
		if(cnt != n) {  //有环 
			printf("-1\n");
			continue;
		}
		int base = 888 * n; //每个人的基础工资
		int layer = 0;
		for(int i=1; i<=n; i++)
			layer += cost[i];
		printf("%d\n", base+layer);
	}
	
	return 0;
}
三、1811 Rank of Tetris

这个题是拓扑排序和+并查集。需要我们判断给出的图是信息冲突,还是信息不全,还是可以判断名次的情况。起初不知道“=”的情况如何处理以及如果将并查集融入进去。下面是大致思路:

  • 并查集就是用来处理“=”这种情况的。属于同一个父节点的节点,它们是等价的
  • 信息不全:入度为0的节点多于1个就说明信息不全了。
  • 信息冲突:图成环了,引入cnt变量初始化为n。若最后cnt > 0,说明冲突。

程序在读入的时候,就要先判断如果输入的是“=”情况并且它们的父节点不相同,则我们将这两个节点合并,并把cnt减1。在向邻接表中加入信息的时候,我们也需要做找祖宗节点(find)的操作,将两个节点间的信息变成祖宗间的信息。那么在第一次入队时,需要满足indegree[i] == 0 && find(i) == i,也就是入度为0的祖宗节点才能入队。

具体AC代码如下:

#include <iostream>
#include <vector>
#include <queue>
#include <string.h>
#include <stdio.h>
using namespace std;
//HDU	Accepted	1811	46MS	1944K	1576 B	G++ 
int n, m, cnt;
int f[10005], a[20005], b[20005];
char op[20005];
int indegree[10005];
vector<int> G[10005];

int find(int x) {
	if(x == f[x])	return x;
	return f[x] = find(f[x]);
}

int main() {
	while(~scanf("%d%d", &n, &m)) {
		int cnt = n;
		memset(indegree, 0, sizeof(indegree));
		for(int i=0; i<10005; i++){
			G[i].clear();
			f[i] = i;
		}
		
		for(int i=0; i<m; i++) {
			scanf("%d %c %d", &a[i], &op[i], &b[i]);
			if(op[i] == '=') {
				//union
				int fa = find(a[i]);
				int fb = find(b[i]);
				if(fa != fb) {
					f[fa] = fb;
					cnt--;	
				}
			}
		}
		//处理并查集
		for(int i=0; i<m; i++) {
			int fa = find(a[i]);
			int fb = find(b[i]);
			if(op[i] == '>') {
				G[fa].push_back(fb);
				indegree[fb]++;
			}
			if(op[i] == '<') {
				G[fb].push_back(fa);
				indegree[fa]++;
			}
		}
		
		queue<int> Q;
		while(!Q.empty())	Q.pop();
		//统计所有节点的入度,把入度为0的祖宗节点加入队列Q
		for(int i=0; i<n; i++)
			if(indegree[i] == 0 && find(i) == i)  //find(i)==i要加 
				Q.push(i);
		bool flag = 0;
		while(!Q.empty()) {
			if(Q.size() > 1) {
				//第一次如果队列里有多于一个元素,说明有多个入度为0的节点,也就是信息不全的情况
				flag = 1; 
			}
			int cur = Q.front();
			Q.pop();
			cnt--;
			for(int i=0; i<G[cur].size(); i++) {
				indegree[G[cur][i]]--;
				if(indegree[G[cur][i]] =	= 0)
					Q.push(G[cur][i]);
			}
		}
		if(cnt > 0)	printf("CONFLICT\n");
		else if(flag)	printf("UNCERTAIN\n");
		else	printf("OK\n");
	}
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值