
YOLOv8
文章平均质量分 76
最新的目标检测算法,各种改进
哥兜兜有糖
看一眼代码就会爆炸
展开
-
YOLO模型评价指标
4. 平均准确率均值(mean average precision,mAP):用于衡量模型在不同类别上的平均准确率。5.FPS(Frame Per Second):评估模型检测速度时常用的指标是 FPS,即每秒帧率, 表示每秒内可以检测的图片数量。3. F1值(F1-score):综合考虑准确率和召回率的指标,由准确率和召回率的加权调和平均值计算而得。1. 准确率(Precision):指模型预测为正样本中实际为正样本的比例。2. 召回率(Recall):指实际为正样本中模型预测为正样本的比例。原创 2024-06-27 20:01:56 · 2527 阅读 · 0 评论 -
YOLO目标检测综述(2025最新!)
目标检测算法,这类检测算法将检测问题划分为两个阶段,第一个阶段首先产生候选区域(Region Proposals),包含目标大概的位置信息,然后第二个阶段对候选区域进行分类和位置精修,这类算法的典型代表有R-CNN,Fast R-CNN,Faster R-CNN等。不过,随着研究的发展,两类算法都在两个方面做改进,均能在准确度以及速度上取得较好的结果。与以往的版本相比,YOLOv5引入了新的网络架构,以及一种新的训练方法,使用更大的数据集和更长的训练时间,从而提高了算法的性能。可以追溯到20世纪80年代。原创 2024-06-27 19:57:53 · 7845 阅读 · 0 评论 -
一文搞懂YOLO系列目标检测!万字长文(附YOLOv8实操教程)
本文介绍目标检测基础概念,算法发展历史,YOLOV8环境配置,数据集标注,模型评估指标,改进策略。原创 2024-06-26 21:19:32 · 39600 阅读 · 8 评论 -
YOLOv8数据集标注
数据集是必不可少的部分,数据集的优劣直接影响训练效果。一般来说,一个完整的数据集应该包括训练集、测试集和验证集。通常,数据集会被划分为训练集和测试集,比如将数据集的70%用作训练集,30%用作测试集。在进行训练时,可以使用交叉验证的方法将训练集再次划分为训练子集和验证子集,用于模型的训练和验证。训练集是用于模型的训练的数据集。在训练过程中,模型使用训练集中的样本进行学习和参数调整,通过不断迭代优化模型的参数,使模型能够更好地拟合训练集中的数据。测试集是用于模型的评估的数据集。原创 2024-06-26 21:22:17 · 1700 阅读 · 0 评论 -
AutoDL租用云GPU运行YOLOv8目标检测算法,保姆式教程!
本文详细介绍如何租用,和配置环境。原创 2023-11-05 22:38:46 · 7361 阅读 · 10 评论