一文搞懂YOLO系列目标检测!万字长文(附YOLOv8实操教程)

目标检测入门精品文章

 本文介绍目标检测基础概念,算法发展历史,YOLOV8环境配置,数据集标注,模型评估指标,改进策略。帮助小白从入门到精通。

目录

一、目标检测基础

1.1 基本概念

1.2 发展历史

 1.3 目标检测四大任务

1.4 目标检测算法的分类

二、环境配置

2.1 下载YOLOv8项目,Anaconda和PyCharm

2.2 安装Anaconda和PyCharm

2.3 创建虚拟环境

2.4 租用GPU,搭建环境

三、目标检测流程

3.1 训练

3.2 测试

四、数据集

4.1 简介

4.2 数据集标注

1 Labelme

2 LabelImg

4.3 VOC数据集转换

五、模型评价指标


一、目标检测基础

1.1 基本概念

        目标检测(Object Detection)是计算机视觉领域的重要任务之一,旨在识别图像或视频中的特定目标并将其位置标记出来。与图像分类任务不同,目标检测要求不仅能够识别目标类别,还需要精确地定位目标的位置。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。

    

1.2 发展历史

        目标检测技术的发展历史可以追溯到20世纪80年代。在早期阶段,目标检测主要依赖于手工设计的特征提取算法和分类器。这些方法通常基于边缘、纹理、颜色等低级特征,并结合模板匹配或统计模型进行目标检测。然而,这些方法受限于特征的表达能力和鲁棒性,对于复杂场景的检测效果较差。

        随着计算机视觉和机器学习的快速发展,基于机器学习的目标检测方法逐渐兴起。其中,主要的突破之一是提出了基于特征的机器学习方法,如Haar特征和HOG特征。这些方法通过训练分类器来学习目标的特征表示,从而实现目标的检测。然而,这些方法仍然需要手动设计特征,并且对于复杂的目标来说,特征的表示能力较弱。

        近年来,深度学习的兴起极大地推动了目标检测技术的发展。基于深度学习的目标检测方法将深度神经网络引入目标检测领域,并取得了重大突破。最具代表性的方法之一是基于区域的卷积神经网络(R-CNN),它将目标检测任务分解为候选区域提取和区域分类两个子任务。后续的方法,如Fast R-CNN、Faster R-CNN和YOLO(You Only Look Once)等进一步改进了速度和准确性。这些方法不仅能够自动学习特征表示,还能够在端到端的框架下进行目标检测。

        YOLO(You Only Look Once)是一种对象检测算法,由Joseph Redmon等人于2015年提出。YOLO的核心思想是将对象检测任务转化为一个回归问题,通过一个卷积神经网络直接在图像上进行推理,实现实时对象检测。

YOLO的发展历程可以分为以下几个阶段:

        YOLO v1:YOLO的第一个版本是在2015年提出的,它采用了一个全卷积神经网络,将输入图像分为S×S个网格,每个网格预测B个边界框和各自边界框的类别概率。然后,通过阈值筛选和非极大值抑制(NMS)来获得最终的检测结果。YOLO v1在速度和准确率上取得了很大的突破,但对小目标和近似目标的检测效果较差。

        YOLOv5是由Ultralytics团队在2020年开发的。YOLOv5相比于之前的版本在精度和速度上都有显著提升。它采用了一种轻量化的结构,包括多个不同大小的卷积层和池化层,用于提取图像特征。与以往的版本相比,YOLOv5引入了新的网络架构,以及一种新的训练方法,使用更大的数据集和更长的训练时间,从而提高了算法的性能。

       YOLOv8 是由 Ultralytics 公司在2023年1月发布的最新一代实时目标检测模型。YOLOv8 采用了先进的骨干网络和颈部架构,实现了改进的特征提取和目标检测性能。它采用了无锚点的分割 Ultralytics 头部设计,这有助于提高准确性并使检测过程更加高效。YOLOv8 还专注于在准确性和速度之间保持最佳平衡,适合于不同应用领域的实时目标检测任务。此外,YOLOv8 提供了一系列预训练模型,以满足不同任务和性能要求,使得用户可以根据自己的具体用例找到合适的模型。

        YOLOv9 由中国台湾 Academia Sinica、台北科技大学等机构联合开发。YOLOv9引入了程序化梯度信息(Programmable Gradient Information, PGI),这是一种全新的概念,旨在解决深层网络中信息丢失的问题。传统的目标检测网络在传递深层信息时,往往会丢失对最终预测至关重要的细节,而PGI技术能够保证网络在学习过程中保持完整的输入信息,从而获得更可靠的梯度信息,提高权重更新的准确性。这一创新显著提高了目标检测的准确率,为实时高精度目标检测提供了可能。此外,YOLOv9采用了全新的网络架构——泛化高效层聚合网络(Generalized Efficient Layer Aggregation Network, GELAN)。GELAN通过梯度路径规划,优化了网络结构,利用传统的卷积操作符实现了超越当前最先进方法(包括基于深度卷积的方法)的参数利用效率。这一设计不仅提高了模型的性能,同时也保证了模型的高效性,使YOLOv9能够在保持轻量级的同时,达到前所未有的准确度和速度。

论文地址:https://arxiv.org/abs/2402.13616

Yolov9源代码:https://github.com/WongKinYiu/yolov9

        YOLOv10是清华大学的研究人员在Ultralytics的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10 在显著降低计算开销的同时实现了最先进的性能。大量实验证明,YOLOv10 在多个模型尺度上实现了卓越的精度-延迟权衡。

YOLOv10 的结构建立在以前YOLO 模型的基础上,同时引入了几项关键创新。模型架构由以下部分组成:

        主干网络:YOLOv10 中的主干网络负责特征提取,它使用了增强版的 CSPNet(跨阶段部分网络),以改善梯度流并减少计算冗余。

        颈部网络:颈部设计用于汇聚不同尺度的特征,并将其传递到头部。它包括 PAN(路径聚合网络)层,可实现有效的多尺度特征融合。

        一对多头:在训练过程中为每个对象生成多个预测,以提供丰富的监督信号并提高学习准确性。

        一对一头:在推理过程中为每个对象生成一个最佳预测,无需 NMS,从而减少延迟并提高效率。

论文:https://arxiv.org/pdf/2405.14458  

源码: GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection  

 

        YOLOv11作为YOLO系列的最新版本,在多个方面进行了创新和改进,以下是其主要创新点:

1. 架构优化

  • C3K2块:YOLOv11引入了C3K2块,这是一种改进的特征提取模块,继承自C2f模块,通过更高效的卷积结构提升了特征提取能力。

  • SPFF模块:空间金字塔快速池化(SPFF)模块被集成到架构中,增强了多尺度特征融合能力。

  • C2PSA模块:跨阶段部分空间注意力(C2PSA)模块通过空间注意力机制,提升了模型对小物体和部分遮挡物体的检测能力。

2. 特征提取能力增强

  • YOLOv11采用了改进的骨干网络(Backbone)和颈部结构(Neck),增强了特征提取能力,能够更精确地处理复杂任务。

  • 骨干网络基于优化后的CSPDarknet53,增加了轻量化模块如SPPF,提升了特征提取的鲁棒性。

3. 效率和速度优化

  • GPU优化:YOLOv11在GPU上进行了优化训练,显著提升了训练速度和推理速度。

### 测试 YOLO 模型的推理速度 为了测试YOLO模型的推理速度,可以通过测量单次或多次图像处理的时间来获取平均推理时间。下面提供了一种方法,在Python环境中利用`time`库记录每次调用`predict()`函数前后的时刻差。 对于基于PyTorch版本的YOLOv8模型: ```python import time from ultralytics import YOLO # 初始化模型并加载权重文件 model = YOLO("../模型/best.pt") image_path = "../测试图片/2.png" start_time = time.time() result = model.predict(image_path, imgsz=640, save=False, device=0) end_time = time.time() inference_time = end_time - start_time print(f"Inference Time: {inference_time:.4f} seconds.")[^1] ``` 如果要更精确地衡量性能,建议重复上述过程若干次(比如100次),去掉最高和最低值之后取平均值得到更加稳定的估计结果。这有助于消除偶然因素带来的误差影响。 针对ONNX格式下的YOLO模型,同样也可以采用类似的计时方式: ```python import time from ultralytics import YOLO onnx_model = YOLO("./model/yolov8n.onnx") test_image = "./images/0_frame_001.jpg" start_time = time.time() results = onnx_model(test_image) end_time = time.time() inference_time_onnx = end_time - start_time print(f"ONNX Inference Time: {inference_time_onnx:.4f} seconds.") ``` 值得注意的是,在多线程环境下执行这些作时,应当遵循线程安全的原则,即为每一个工作线程创建独立的YOLO模型例以避免竞争条件的发生[^2]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥兜兜有糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值