Java算法_下一个排列(LeetCode_Hot100)

题目描述: 例如,arr = [1,2,3] ,以下这些都可以视作 arr 的排列:[1,2,3]、[1,3,2]、[3,1,2]、[2,3,1] 。 整数数组的 下一个排列 是指其整数的下一个字典序更大的排列。更正式地,如果数组的所有排列根据其字典顺序从小到大排列在一个容器中,那么数组的 下一个排列 就是在这个有序容器中排在它后面的那个排列。如果不存在下一个更大的排列,那么这个数组必须重排为字典序最小的排列(即,其元素按升序排列)。 例如,arr = [1,2,3] 的下一个排列是 [1,3,2] 。 类似地,arr = [2,3,1] 的下一个排列是 [3,1,2] 。 而 arr = [3,2,1] 的下一个排列是 [1,2,3] ,因为 [3,2,1] 不存在一个字典序更大的排列。 给你一个整数数组 nums ,找出 nums 的下一个排列。 必须 原地 修改,只允许使用额外常数空间。

获得更多?
算法思路,案例演示,代码文档,算法解析的私得

在这里插入图片描述

项目源码

/**
 * 2 * @Author: LJJ
 * 3 * @Date: 2023/7/20 9:37
 * 4
 */
public class NextPermutation {
    public static void nextPermutation(int[] nums){
        int n = nums.length;
        // i是下标,n-2,是倒数第二个元素,数组 [1, 3, 5, 4, 2],从倒数第二个元素 i = 3(对应元素值为 4)开始
        int i = n-2;

        //1.找到第一个非递增的元素,nums[i];
        while (i>=0 && nums[i] >= nums[i+1]){
            i--;
        }

        // 2. 如果找到了非递增元素 nums[i]
        if (i>=0){
            int j = n-1;

            // 3. 从后往前找到第一个比nums[i] 大的元素 num[j]

            while (j>=0&&nums[j] <= nums[i]){
                j--;
            }
            // 4. 交换nums[i] 和nums[j]
            swap(nums,i,j);
        }
        //5.将位置 i+1 开始到数组末尾的元素反转
        reverse(nums,i+1);
    }

    public static void swap(int[] nums,int i,int j){
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }
    public static void reverse(int[] nums,int start){
        int left = start;
        int right = nums.length-1;
        while (left<right){
            swap(nums,left,right);
            left++;
            right--;
        }
    }

    public static void main(String[] args) {
        int[] nums = {2, 3,5,3,1};
        nextPermutation(nums);
        System.out.print("Next Permutation: ");
        for (int num : nums) {
            System.out.print(num + " ");
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值