【gmoj】 【DP】 环中环(70)
题目
解题思路
看到环就先想怎么将ta断成链
当ta是链时 能不能取和前面一个判断是否差为1即可
而环还要判断一下头和尾的差 可以将它放到统计答案时判
设f[i][j]以i为开头j为结尾的环的环,取了f[i][j]个数
但是i这一维对后面并没有贡献 将它舍去
因为第一重枚举的是开头,没必要记录
就变成f[j]以j为结尾的环,取了f[j]个数
状态转移 就是枚举一个k 看是否能接在它后面
统计答案时 找一个在它前面 且与它差不为1的数
个数相减 取最大值 找一个前面的数可以看做确定开头
当这个数已经被加入过某个环 标记它 不需要重复做
以它为开头 和别人做开头它加进去 它的贡献都是一样的 可以省时间
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int ans,n,a[100010],f[100010],p[100010];
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
for (int i=1;i<=n;i++)
{
if (p[i]) continue;
if (n-i+1<ans) break;
memset(f,0,sizeof(f));
f[i]=1;
for (int j=i+1;j<=n;j++)
{
for (int k=i;k<j;k++)
if (abs(a[k]-a[j])!=1&&f[k])
f[j]=max(f[j],f[k]+1);
if (f[j]!=0) p[j]=1;
for (int k=i;k<j;k++)
if (abs(a[k]-a[j])!=1&&f[k])
ans=max(f[j]-f[k]+1,ans);
}
}
printf("%d",ans);
return 0;
}