【gmoj】 【DP】 环中环(70)

【gmoj】 【DP】 环中环(70)

题目

在这里插入图片描述
在这里插入图片描述


解题思路

看到环就先想怎么将ta断成链
当ta是链时 能不能取和前面一个判断是否差为1即可
而环还要判断一下头和尾的差 可以将它放到统计答案时判

设f[i][j]以i为开头j为结尾的环的环,取了f[i][j]个数
但是i这一维对后面并没有贡献 将它舍去
因为第一重枚举的是开头,没必要记录
就变成f[j]以j为结尾的环,取了f[j]个数
状态转移 就是枚举一个k 看是否能接在它后面

统计答案时 找一个在它前面 且与它差不为1的数
个数相减 取最大值 找一个前面的数可以看做确定开头
当这个数已经被加入过某个环 标记它 不需要重复做
以它为开头 和别人做开头它加进去 它的贡献都是一样的 可以省时间


代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int ans,n,a[100010],f[100010],p[100010];
int main()
{
	scanf("%d",&n);
	for (int i=1;i<=n;i++) scanf("%d",&a[i]);
	for (int i=1;i<=n;i++)
	{
		if (p[i]) continue;
		if (n-i+1<ans) break;
		memset(f,0,sizeof(f));
		f[i]=1;
		for (int j=i+1;j<=n;j++)
		{
		    for (int k=i;k<j;k++)
		        if (abs(a[k]-a[j])!=1&&f[k])
		            f[j]=max(f[j],f[k]+1);
		    if (f[j]!=0) p[j]=1; 
		    for (int k=i;k<j;k++)
		        if (abs(a[k]-a[j])!=1&&f[k])
		            ans=max(f[j]-f[k]+1,ans);
		} 
	}
	printf("%d",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值