直方图
cv2.calcHist(images,channels,mask,histSize,ranges)
- images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]
- channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像 的传入的参数可以是 [0][1][2] 它们分别对应着 BGR。
- mask: 掩模图像。统整幅图像的直方图就把它为 None。但是如 果你想统图像某一分的直方图的你就制作一个掩模图像并 使用它。
- histSize:BIN 的数目。也应用中括号括来
- ranges: 像素值范围常为 [0256]
img = cv2.imread('D:\\Desktop\\opencv\\girl.jpg',0) #0表示灰度图
hist = cv2.calcHist([img],[0],None,[256],[0,256])
hist.shape
#(256, 1)
plt.hist(img.ravel(),256);
plt.show()
img = cv2.imread('D:\\Desktop\\opencv\\girl.jpg')
color = ('b','g','r')
for i,col in enumerate(color):
histr = cv2.calcHist([img],[i],None,[256],[0,256])
plt.plot(histr,color = col)
plt.xlim([0,256])
直方图均衡化
equ = cv2.equalizeHist(img)
plt.hist(equ.ravel(),256)
plt.show()
#均衡化结果
res = np.hstack((img,equ))
cv_show(res,'res')
自适应均衡化
傅里叶变换
傅里叶变换的作用
- 高频:变化剧烈的灰度分量,例如边界
- 低频:变化缓慢的灰度分量,例如一篇大海
滤波
-
低通滤波器:只保留低频,会使得图像模糊
-
高通滤波器:只保留高频,会使得图像细节增强
-
opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32格式
-
得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现
-
cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('D:\\Desktop\\opencv\\girl.jpg',0)
img_float32 = np.float32(img)
dft = cv2.dft(img_float32,flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
#得到灰度图能表示的形式
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Input Imagea'),plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum,cmap = 'gray')
plt.title('Magnitude Spectrum'),plt.xticks([]),plt.yticks([])
plt.show()
低通滤波
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('D:\\Desktop\\opencv\\girl.jpg',0)
img_float32 = np.float32(img)
dft = cv2.dft(img_float32,flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
crow, ccol = int(rows/2), int(cols/2) #中心位置
#低通滤波
mask = np.zeros((rows, cols, 2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
#IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Input Image'), plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(img_back,cmap = 'gray')
plt.title('Result'), plt.xticks([]),plt.yticks([])
plt.show()
高通滤波
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('D:\\Desktop\\opencv\\girl.jpg',0)
img_float32 = np.float32(img)
dft = cv2.dft(img_float32,flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
crow, ccol = int(rows/2), int(cols/2) #中心位置
#高通滤波
mask = np.ones((rows, cols, 2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0
#IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Input Image'), plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(img_back,cmap = 'gray')
plt.title('Result'), plt.xticks([]),plt.yticks([])
plt.show()