OpenCV+Python直方图与傅里叶变换

直方图

在这里插入图片描述

cv2.calcHist(images,channels,mask,histSize,ranges)
  • images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]
  • channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像 的传入的参数可以是 [0][1][2] 它们分别对应着 BGR。
  • mask: 掩模图像。统整幅图像的直方图就把它为 None。但是如 果你想统图像某一分的直方图的你就制作一个掩模图像并 使用它。
  • histSize:BIN 的数目。也应用中括号括来
  • ranges: 像素值范围常为 [0256]
img = cv2.imread('D:\\Desktop\\opencv\\girl.jpg',0) #0表示灰度图
hist = cv2.calcHist([img],[0],None,[256],[0,256])
hist.shape
#(256, 1)
plt.hist(img.ravel(),256); 
plt.show()

在这里插入图片描述

img = cv2.imread('D:\\Desktop\\opencv\\girl.jpg') 
color = ('b','g','r')
for i,col in enumerate(color): 
    histr = cv2.calcHist([img],[i],None,[256],[0,256]) 
    plt.plot(histr,color = col) 
    plt.xlim([0,256]) 

在这里插入图片描述

直方图均衡化
equ = cv2.equalizeHist(img) 
plt.hist(equ.ravel(),256)
plt.show()

在这里插入图片描述

#均衡化结果
res = np.hstack((img,equ))
cv_show(res,'res')

在这里插入图片描述
自适应均衡化

傅里叶变换

傅里叶变换的作用
  • 高频:变化剧烈的灰度分量,例如边界
  • 低频:变化缓慢的灰度分量,例如一篇大海
滤波
  • 低通滤波器:只保留低频,会使得图像模糊

  • 高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32格式

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现

  • cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)

傅里叶分析之掐死教程(转自知乎)

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('D:\\Desktop\\opencv\\girl.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32,flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
#得到灰度图能表示的形式
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))

plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Input Imagea'),plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum,cmap = 'gray')
plt.title('Magnitude Spectrum'),plt.xticks([]),plt.yticks([])
plt.show()

在这里插入图片描述

低通滤波
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('D:\\Desktop\\opencv\\girl.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32,flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
crow, ccol = int(rows/2), int(cols/2)  #中心位置

#低通滤波
mask = np.zeros((rows, cols, 2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1

#IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Input Image'), plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(img_back,cmap = 'gray')
plt.title('Result'), plt.xticks([]),plt.yticks([])

plt.show()

在这里插入图片描述

高通滤波
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('D:\\Desktop\\opencv\\girl.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32,flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
crow, ccol = int(rows/2), int(cols/2)  #中心位置

#高通滤波
mask = np.ones((rows, cols, 2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

#IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Input Image'), plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(img_back,cmap = 'gray')
plt.title('Result'), plt.xticks([]),plt.yticks([])

plt.show()

在这里插入图片描述

以下是Python OpenCV傅里叶变换直方图显示的示例代码: ```python import cv2 import numpy as np from matplotlib import pyplot as plt # 读取图像 img = cv2.imread('image.jpg', 0) # 傅里叶变换 f = np.fft.fft2(img) fshift = np.fft.fftshift(f) magnitude_spectrum = 20*np.log(np.abs(fshift)) # 直方图 hist, bins = np.histogram(magnitude_spectrum.ravel(), 256, [0,256]) # 显示图像和直方图 plt.subplot(121), plt.imshow(img, cmap='gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.plot(hist) plt.title('Magnitude Spectrum'), plt.xlim([0,256]), plt.ylim([0,np.max(hist)]) plt.show() ``` 该代码将读取名为 "image.jpg" 的图像,进行傅里叶变换,并绘制该结果的幅度谱直方图。注意,该示例使用Matplotlib库来显示图像和直方图。必要时,请确保安装了此库。 如果你想在OpenCV中显示直方图,可以使用cv2.calcHist()函数来计算并绘制直方图。以下是显示直方图的示例代码: ```python import cv2 import numpy as np from matplotlib import pyplot as plt # 读取图像并转换为灰度 img = cv2.imread('image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 计算直方图 hist = cv2.calcHist([gray], [0], None, [256], [0,256]) # 显示直方图 plt.plot(hist) plt.xlim([0,256]), plt.ylim([0,np.max(hist)]) plt.show() ``` 该代码将读取名为 "image.jpg" 的图像,并绘制其灰度直方图。注意,此示例使用Matplotlib库来显示直方图。如果您使用此方法,请确保计算的直方图与您的需求匹配。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里守约

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值