线性代数(一)—— 行列式
引言
本专栏主要根据宋浩老师的线性代数视频梳理线性代数的知识点,再根据博主考研过程中做题进行补充说明
二阶三阶行列式
-
行列式一定是方的
∣ 1 0 0 2 1 3 0 3 1 ∣ \left| \begin{array}{cccc} 1 & 0 & 0 \\ 2 & 1 & 3\\ 0 & 3 & 1 \end{array} \right| ∣∣∣∣∣∣120013031∣∣∣∣∣∣ -
从左向右对角线是主对角线 ∣ 1 1 1 ∣ \left| \begin{array}{cccc} 1 & & \\ & 1 & \\ & & 1 \end{array} \right| ∣∣∣∣∣∣111∣∣∣∣∣∣
-
从右向左对角线是次对角线 ∣ 0 1 0 ∣ \left| \begin{array}{cccc} & & 0\\ & 1 & \\ 0& & \end{array} \right| ∣∣∣∣∣∣010∣∣∣∣∣∣
-
排列: 1 , 2 , 3 , … … , n 1,2,3,……,n 1,2,3,……,n组成的一个有序数组叫n级排列,中间不能缺数
- 3级排列: 123 , 132 , 213 , 231 , 312 , 321 123,132,213,231,312,321 123,132,213,231,312,321
-
逆序:大数排在小数前面
-
逆序数:逆序的总数
-
奇/偶排列:逆序数为奇/偶
-
标准排列: 1234 … … n 1234……n 1234……n
-
对换:交换排列中的两个数
- 做一次对换,排列奇偶性改变
N阶行列式
N阶行列式计算
-
按行展开
- 行取标准排列
- 列标取排列的所有可能,从不同行不同列取出 n n n个元素相乘
- 共有 N ! N! N!项
- 每一行的符号由列标排列的奇偶性决定,偶正奇负
-
下三角行列式
∣ 1 0 0 1 1 0 1 1 1 ∣ \left| \begin{array}{cccc} 1& 0& 0\\ 1& 1 & 0\\ 1 &1 &1 \end{array} \right| ∣∣∣∣∣∣111011001∣∣∣∣∣∣- 右上方三角形区域元素全部为0
- 下三角行列式 = 主对角线元素相乘
-
上三角行列式
∣ 1 1 1 0 1 1 0 0 1 ∣ \left| \begin{array}{cccc} 1& 1& 1\\ 0& 1& 1\\ 0 &0 &1 \end{array} \right| ∣∣∣∣∣∣100110111∣∣∣∣∣∣- 左下方三角形区域元素全部为0
- 上三角行列式 = 主对角线元素相乘
-
对角线行列式
∣ 1 1 1 ∣ \left| \begin{array}{cccc} 1& & \\ & 1 & \\ & &1 \end{array} \right| ∣∣∣∣∣∣111∣∣∣∣∣∣- 只有主对角线上有数
-
副对角线行列式
∣ 1 1 1 ∣ \left| \begin{array}{cccc} & & 1\\ & 1& \\ 1& & \end{array} \right| ∣∣∣∣∣∣111∣∣∣∣∣∣- 副对角线行列式 = ( − 1 ) n ∗ ( n − 1 ) ∗ 副 对 角 线 元 素 相 乘 (-1)^{n*(n-1)}*副对角线元素相乘 (−1)n∗(n−1)∗副对角线元素相乘
-
三角行列式总结
-
行列式的三种定义
- 按行展开,符号由列标排列决定
- 按列展开,符号由行标排列决定
- 胡乱展开,符号由行标排列逆序数和列标排列逆序数之和决定
( − 1 ) N ( i 1 , i 2 , … … , i N ) + N ( j 1 , j 2 , … … , j N ) , i : 行 标 , j : 列 标 (-1)^{N(i1,i2,……,iN)+N(j1,j2,……,jN)}, i:行标,j:列标 (−1)N(i1,i2,……,iN)+N(j1,j2,……,jN),i:行标,j:列标
行列式的性质
行列式对行成立的性质对列也成立
性质一 转置
- 转置:把行按列写
- 行列式转置后值不变
- 行列式转置的转置等于本身
性质二 两行互换
- 行列式两行互换,值变号
性质三 两行相同
- 行列式两行相同,等于0
性质四 行公因子k
- 行列式某行都乘以k,等于用k乘以这个行列式。即行列式某一行有公因子k,可往外提一次
- 若行列式所有元素都有公因子k,k外提N次
性质五 两行成比例
- 行列式两行成比例,则行列式值为0
- 某一行全为0,则行列式为0
性质六 和分解
- 若行列式某一行元素都可以表示为两项和,则行列式等于两个行列式相加
∣ 1 + 2 2 + 3 1 + 3 2 1 3 0 3 1 ∣ = ∣ 1 2 1 2 1 3 0 3 1 ∣ + ∣ 2 3 3 2 1 3 0 3 1 ∣ \left| \begin{array}{cccc} 1+2 & 2+3 & 1+3 \\ 2 & 1 & 3\\ 0 & 3 & 1 \end{array} \right| = \left| \begin{array}{cccc} 1 & 2 & 1 \\ 2 & 1 & 3\\ 0 & 3 & 1 \end{array} \right| +\left| \begin{array}{cccc} 2 & 3 & 3 \\ 2 & 1 & 3\\ 0 & 3 & 1 \end{array} \right| ∣∣∣∣∣∣1+2202+3131+331∣∣∣∣∣∣=∣∣∣∣∣∣120213131∣∣∣∣∣∣+∣∣∣∣∣∣220313331∣∣∣∣∣∣
性质七 行叠加
- 某一行乘以一个数加到另一行上去,行列式值不变
行列式值计算通用法
- 行列式化为上三角行列式,连乘对角线元素
- 利用性质七将左下角元素从左到右从上到下消为0
- 先处理第一列,再处理第二列,再第三列
- 第一列处理完,第一行不再参与运算
行列式展开
余子式
- 在行列式中选中某个元素,去掉所在行列,剩余的元素构成的行列式叫这个元素的余子式 M i j M_{ij} Mij, M M M代表余子式, i i i代表选中元素的行标, j j j列标, i j ij ij从1开始
代数余子式
- 在余子式前面加上符号 ( − 1 ) i + j (-1)^{i+j} (−1)i+j
降阶:行列式按某一行/列展开
- 行列式的值 = 某一行所有元素乘以自己的代数余子式的积之和,列同理
- 选0多的行/列展开
异乘变零定理
- 某行元素与另一行元素的代数余子式乘积之和为零
拉普拉斯定理
- k k k阶子式:任取 k k k行 k k k列,交叉处构成的行列式为 k k k阶子式
- k k k阶子式的余子式:除去选中行列,其余行列形成的子式为 k k k阶子式的余子式
- k k k阶子式的代数余子式:多个符号 ( − 1 ) 所 有 行 标 与 列 标 之 和 (-1)^{所有行标与列标之和} (−1)所有行标与列标之和
拉普拉斯展开定理
- 取定 k k k行,由 k k k行元素组成的所有 k k k阶子式与其代数余子式乘积之和 = 行列式值
同阶行列式相乘
- 同阶行列式相乘的值 = 两个行列式做矩阵乘法后得到的行列式的值
行列式的计算
纯数字行列式计算
- 将行列式化为上三角行列式,连乘对角线元素
已知行列式求余子式之和
- 构造新行列式
对角线为x,其余为a的行列式计算技巧
行列式计算基础思路
- 1.化成上三角
- 2.把某行/列尽可能多得化成0,然后展开
三叉形行列式
- 加边法:在顶上加一行1,左边多出的一列(除第一行)为0,行列式值不变
- 有字母,放分母,考虑是否为0
范德蒙德行列式
反对称行列式
- a i j = − a j i a_{ij} = -a_{ji} aij=−aji
- 主对角线全为0
- 上下位置对应成相反数
- 奇数阶,行列式值 D = 0
对称行列式
- a i j = a j i a_{ij} = a_{ji} aij=aji
- 主对角线无要求
- 上下位置对应相等
克莱姆法则
解方程组
- n n n个方程, n n n个未知量(方程个数 = 未知数个数)
- D ≠ 0 D ≠ 0 D=0(系数行列式不为0)
-
x
j
=
D
j
/
D
x_j = D_j / D
xj=Dj/D,
D
D
D为方程组系数构成的行列式,
D
j
D_j
Dj代表把方程组值用于替换
D
D
D的第
j
j
j列得到的行列式,
x
j
x_j
xj代表解
解齐次线性方程组
- n n n个方程, n n n个未知量
- 齐次:方程组值都为 0 0 0,等号右边均为 0 0 0
- 齐次方程,至少有零解
- 若
D
≠
0
D ≠ 0
D=0,只有零解;若
D
=
0
D = 0
D=0 <=> 有非零解