线性代数(一)—— 行列式

本文详细介绍了线性代数中的行列式概念,包括二阶三阶行列式、N阶行列式的计算方法和性质。重点讲解了行列式的展开、转置性质、行列式值的计算技巧,如按行展开、上三角行列式计算,以及拉普拉斯定理。此外,还讨论了特殊类型的行列式,如对称行列式和反对称行列式,并介绍了克莱姆法则在解线性方程组中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

本专栏主要根据宋浩老师的线性代数视频梳理线性代数的知识点,再根据博主考研过程中做题进行补充说明

二阶三阶行列式

  • 行列式一定是方的
    ∣ 1 0 0 2 1 3 0 3 1 ∣ \left| \begin{array}{cccc} 1 & 0 & 0 \\ 2 & 1 & 3\\ 0 & 3 & 1 \end{array} \right| 120013031

  • 从左向右对角线是主对角线 ∣ 1 1 1 ∣ \left| \begin{array}{cccc} 1 & & \\ & 1 & \\ & & 1 \end{array} \right| 111

  • 从右向左对角线是次对角线 ∣ 0 1 0 ∣ \left| \begin{array}{cccc} & & 0\\ & 1 & \\ 0& & \end{array} \right| 010

  • 排列: 1 , 2 , 3 , … … , n 1,2,3,……,n 123n组成的一个有序数组叫n级排列,中间不能缺数

    • 3级排列: 123 , 132 , 213 , 231 , 312 , 321 123,132,213,231,312,321 123132213231312321
  • 逆序:大数排在小数前面

  • 逆序数:逆序的总数

  • 奇/偶排列:逆序数为奇/偶

  • 标准排列: 1234 … … n 1234……n 1234n

  • 对换:交换排列中的两个数

    • 做一次对换,排列奇偶性改变

N阶行列式

N阶行列式计算

  • 按行展开

    • 行取标准排列
    • 列标取排列的所有可能,从不同行不同列取出 n n n个元素相乘
    • 共有 N ! N! N!
    • 每一行的符号由列标排列的奇偶性决定,偶正奇负
  • 下三角行列式
    ∣ 1 0 0 1 1 0 1 1 1 ∣ \left| \begin{array}{cccc} 1& 0& 0\\ 1& 1 & 0\\ 1 &1 &1 \end{array} \right| 111011001

    • 右上方三角形区域元素全部为0
    • 下三角行列式 = 主对角线元素相乘
  • 上三角行列式
    ∣ 1 1 1 0 1 1 0 0 1 ∣ \left| \begin{array}{cccc} 1& 1& 1\\ 0& 1& 1\\ 0 &0 &1 \end{array} \right| 100110111

    • 左下方三角形区域元素全部为0
    • 上三角行列式 = 主对角线元素相乘
  • 对角线行列式
    ∣ 1 1 1 ∣ \left| \begin{array}{cccc} 1& & \\ & 1 & \\ & &1 \end{array} \right| 111

    • 只有主对角线上有数
  • 副对角线行列式
    ∣ 1 1 1 ∣ \left| \begin{array}{cccc} & & 1\\ & 1& \\ 1& & \end{array} \right| 111

    • 副对角线行列式 = ( − 1 ) n ∗ ( n − 1 ) ∗ 副 对 角 线 元 素 相 乘 (-1)^{n*(n-1)}*副对角线元素相乘 (1)n(n1)线
  • 三角行列式总结
    在这里插入图片描述

  • 行列式的三种定义

    • 按行展开,符号由列标排列决定
    • 按列展开,符号由行标排列决定
    • 胡乱展开,符号由行标排列逆序数和列标排列逆序数之和决定
      ( − 1 ) N ( i 1 , i 2 , … … , i N ) + N ( j 1 , j 2 , … … , j N ) , i : 行 标 , j : 列 标 (-1)^{N(i1,i2,……,iN)+N(j1,j2,……,jN)}, i:行标,j:列标 (1)N(i1,i2,,iN)+N(j1,j2,,jN),ij

行列式的性质

行列式对行成立的性质对列也成立

性质一 转置

  • 转置:把行按列写
  • 行列式转置后值不变
  • 行列式转置的转置等于本身

性质二 两行互换

  • 行列式两行互换,值变号

性质三 两行相同

  • 行列式两行相同,等于0

性质四 行公因子k

  • 行列式某行都乘以k,等于用k乘以这个行列式。即行列式某一行有公因子k,可往外提一次
  • 若行列式所有元素都有公因子k,k外提N次

性质五 两行成比例

  • 行列式两行成比例,则行列式值为0
  • 某一行全为0,则行列式为0

性质六 和分解

  • 若行列式某一行元素都可以表示为两项和,则行列式等于两个行列式相加
    ∣ 1 + 2 2 + 3 1 + 3 2 1 3 0 3 1 ∣ = ∣ 1 2 1 2 1 3 0 3 1 ∣ + ∣ 2 3 3 2 1 3 0 3 1 ∣ \left| \begin{array}{cccc} 1+2 & 2+3 & 1+3 \\ 2 & 1 & 3\\ 0 & 3 & 1 \end{array} \right| = \left| \begin{array}{cccc} 1 & 2 & 1 \\ 2 & 1 & 3\\ 0 & 3 & 1 \end{array} \right| +\left| \begin{array}{cccc} 2 & 3 & 3 \\ 2 & 1 & 3\\ 0 & 3 & 1 \end{array} \right| 1+2202+3131+331=120213131+220313331

性质七 行叠加

  • 某一行乘以一个数加到另一行上去,行列式值不变

行列式值计算通用法

  • 行列式化为上三角行列式,连乘对角线元素
  • 利用性质七将左下角元素从左到右从上到下消为0
    • 先处理第一列,再处理第二列,再第三列
    • 第一列处理完,第一行不再参与运算

行列式展开

余子式

  • 在行列式中选中某个元素,去掉所在行列,剩余的元素构成的行列式叫这个元素的余子式 M i j M_{ij} Mij M M M代表余子式, i i i代表选中元素的行标, j j j列标, i j ij ij从1开始

代数余子式

  • 在余子式前面加上符号 ( − 1 ) i + j (-1)^{i+j} (1)i+j

降阶:行列式按某一行/列展开

  • 行列式的值 = 某一行所有元素乘以自己的代数余子式的积之和,列同理
  • 选0多的行/列展开

异乘变零定理

  • 某行元素与另一行元素的代数余子式乘积之和为零

拉普拉斯定理

  • k k k阶子式:任取 k k k k k k列,交叉处构成的行列式为 k k k阶子式
  • k k k阶子式的余子式:除去选中行列,其余行列形成的子式为 k k k阶子式的余子式
  • k k k阶子式的代数余子式:多个符号 ( − 1 ) 所 有 行 标 与 列 标 之 和 (-1)^{所有行标与列标之和} (1)

拉普拉斯展开定理

  • 取定 k k k行,由 k k k行元素组成的所有 k k k阶子式与其代数余子式乘积之和 = 行列式值

同阶行列式相乘

  • 同阶行列式相乘的值 = 两个行列式做矩阵乘法后得到的行列式的值

行列式的计算

纯数字行列式计算

  • 将行列式化为上三角行列式,连乘对角线元素

已知行列式求余子式之和

  • 构造新行列式

对角线为x,其余为a的行列式计算技巧

行列式计算基础思路

  • 1.化成上三角
  • 2.把某行/列尽可能多得化成0,然后展开

三叉形行列式

  • 加边法:在顶上加一行1,左边多出的一列(除第一行)为0,行列式值不变
  • 有字母,放分母,考虑是否为0

范德蒙德行列式

在这里插入图片描述

反对称行列式

  • a i j = − a j i a_{ij} = -a_{ji} aij=aji
  • 主对角线全为0
  • 上下位置对应成相反数
  • 奇数阶,行列式值 D = 0

对称行列式

  • a i j = a j i a_{ij} = a_{ji} aij=aji
  • 主对角线无要求
  • 上下位置对应相等

克莱姆法则

解方程组

  • n n n个方程, n n n个未知量(方程个数 = 未知数个数)
  • D ≠ 0 D ≠ 0 D=0(系数行列式不为0)
  • x j = D j / D x_j = D_j / D xj=Dj/D D D D为方程组系数构成的行列式, D j D_j Dj代表把方程组值用于替换 D D D的第 j j j列得到的行列式, x j x_j xj代表解
    在这里插入图片描述

解齐次线性方程组

  • n n n个方程, n n n个未知量
  • 齐次:方程组值都为 0 0 0,等号右边均为 0 0 0
  • 齐次方程,至少有零解
  • D ≠ 0 D ≠ 0 D=0,只有零解;若 D = 0 D = 0 D=0 <=> 有非零解
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值