常见函数的级数展开

函数麦克劳林级数 x x x范围
e x e^x ex ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + … \sum_{n=0}^{\infty}\frac{x^n}{n!}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots n=0n!xn=1+x+2!x2+3!x3+ − ∞ < x < + ∞ -\infty<x<+\infty <x<+
s i n x sinx sinx ∑ n = 1 ∞ ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + … \sum_{n=1}^{\infty}(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!}=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\dots n=1(1)n1(2n1)!x2n1=x3!x3+5!x57!x7+ − ∞ < x < + ∞ -\infty<x<+\infty <x<+
c o s x cosx cosx ∑ n = 1 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + … \sum_{n=1}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\dots n=1(1)n(2n)!x2n=12!x2+4!x46!x6+ − ∞ < x < + ∞ -\infty<x<+\infty <x<+
l n ( 1 + x ) ln(1+x) ln(1+x) ∑ n = 1 ∞ ( − 1 ) n x n + 1 n + 1 = x − x 2 2 + x 3 3 − x 4 4 + … \sum_{n=1}^{\infty}(-1)^n\frac{x^{n+1}}{n+1}=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\dots n=1(1)nn+1xn+1=x2x2+3x34x4+ − 1 < x ≤ 1 -1<x\leq 1 1<x1
1 1 − x \frac{1}{1-x} 1x1 ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + x 4 + … \sum_{n=0}^{\infty}x^n=1+x+x^2+x^3+x^4+\dots n=0xn=1+x+x2+x3+x4+ − 1 < x < 1 -1<x< 1 1<x<1
1 1 + x \frac{1}{1+x} 1+x1 ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + x 4 + … \sum_{n=0}^{\infty}(-1)^nx^n=1-x+x^2-x^3+x^4+\dots n=0(1)nxn=1x+x2x3+x4+ − 1 < x < 1 -1<x< 1 1<x<1
( 1 + x ) α (1+x)^\alpha (1+x)α 1 + ∑ n = 1 ∞ α ( α − 1 ) … ( α − n + 1 ) n ! x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + … 1+\sum_{n=1}^{\infty}\frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\dots 1+n=1n!α(α1)(αn+1)xn=1+αx+2!α(α1)x2+ − 1 < x < 1 -1<x< 1 1<x<1
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值