计量经济学——一元线性回归模型(例题)
题目:对一元线性回归模型Yi=β0+β1Xi+μiY_{i}=\beta_{0}+\beta_{1}X_{i}+\mu_{i}Yi=β0+β1Xi+μi,试证明Cov(β0^,β1^)=−σ2X‾∑xi2Cov(\widehat{\beta_{0}},\widehat{\beta_{1}})=-\frac{\sigma^2\overline{X}}{\sum{x^2_{i}}}Cov(β0,β1)=−∑xi2σ2X证明:在给定XXX的样本条件下Cov(β0^,β1^)=E[(β0^−
原创
2021-08-18 23:04:51 ·
4168 阅读 ·
0 评论