计量经济学——一元线性回归模型(例题)

题目:对一元线性回归模型 Y i = β 0 + β 1 X i + μ i Y_{i}=\beta_{0}+\beta_{1}X_{i}+\mu_{i} Yi=β0+β1Xi+μi,试证明 C o v ( β 0 ^ , β 1 ^ ) = − σ 2 X ‾ ∑ x i 2 Cov(\widehat{\beta_{0}},\widehat{\beta_{1}})=-\frac{\sigma^2\overline{X}}{\sum{x^2_{i}}} Cov(β0 ,β1 )=xi2σ2X
证明:在给定 X X X的样本条件下 C o v ( β 0 ^ , β 1 ^ ) = E [ ( β 0 ^ − β 0 ) ( β 1 ^ − β 1 ] Cov(\widehat{\beta_{0}},\widehat{\beta_{1}})=E[(\widehat{\beta_{0}}-\beta_{0})(\widehat{\beta_{1}}-\beta_{1}] Cov(β0 ,β1 )=E[(β0 β0)(β1 β1]
= E [ ( β 0 ^ − E ( β 0 ^ ) ) ( β 1 ^ − E ( β 1 ^ ) ) ] =E[(\widehat{\beta_{0}}-E(\widehat{\beta_{0}}))(\widehat{\beta_{1}}-E(\widehat{\beta_{1}}))] =E[(β0 E(β0 ))(β1 E(β1 ))]
= E [ ( Y ‾ − β 1 ^ X ‾ − Y ‾ + X ‾ E ( β 1 ^ ) ) ( β 1 ^ − E ( β 1 ^ ) ) ] =E[(\overline{Y}-\widehat{\beta_{1}}\overline{X}-\overline{Y}+\overline{X}E(\widehat{\beta_{1}}))(\widehat{\beta_{1}}-E(\widehat{\beta_{1}}))] =E[(Yβ1 XY+XE(β1 ))(β1 E(β1 ))]
= − X ‾ E [ ( β 1 ^ − E ( β 1 ^ ) ) ( β 1 ^ − E ( β 1 ^ ) ) ] =-\overline{X}E[(\widehat{\beta_{1}}-E(\widehat{\beta_{1}}))(\widehat{\beta_{1}}-E(\widehat{\beta_{1}}))] =XE[(β1 E(β1 ))(β1 E(β1 ))]
= − X ‾ E [ ( β 1 ^ − E ( β 1 ^ ) ) ] 2 =-\overline{X}E[(\widehat{\beta_{1}}-E(\widehat{\beta_{1}}))]^2 =XE[(β1 E(β1 ))]2
= − X ‾ V a r ( β 1 ^ ) =-\overline{X}Var(\widehat{\beta_{1}}) =XVar(β1 )
= − σ 2 X ‾ ∑ x i 2 =-\frac{\sigma^2\overline{X}}{\sum{x^2_{i}}} =xi2σ2X

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值