第七章 分支限界算法

分支限界法类似于回溯法,是一种在问题的解空间树上搜索问题解的算法。
分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
分支限界法常以广度优先的方式搜索问题的解空间树。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。
从活结点表中选择下一扩展结点的不同方式导致不同的分支限界法:
队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
最大优先队列:使用最大堆,体现最大效益优先
最小优先队列:使用最小堆,体现最小费用优先
【例】一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数。如:
阵列
4 10
0234500067
1034560500
2045600671
0000000089
有4个细胞。
#include
using namespace std;
int dx[4]={-1,0,1,0}, // x,y 方向上的增量
dy[4]={0,1,0,-1};
int bz[100][100],num=0,n,m; //二维数组,存储原始矩阵
void doit(int p,int q){ //p,q矩阵的行列号
int x,y,t,w,i;
int h[1000][2]; //顺序队列,记录入队细胞元素在二维数组中的位置
num++; //细胞个数增1
bz[p][q]=0; //细胞元素清0
t=0;w=1; //队列指针。t队首,w 队尾
h[1][1]=p; h[1][2]=q; //遇到的第一个细胞入队
do {
t++; //队头指针加1
for (i=0;i<=3;i++){ //沿细胞的上下左右四个方向搜索细胞
x=h[t][1]+dx[i];
y=h[t][2]+dy[i];
if ((x>=0)&&(x<m)&&(y>=0)&&(y<n)&&(bz[x][y])){
w++;
h[w][1]=x; h[w][2]=y; bz[x][y]=0;
} //本方向搜索到细胞就入队
}
}while (t<w); //直至队空为止
}
int main(){
int i,j;
char s[100],ch;
scanf("%d%d\n",&m,&n);
for (i=0; i<=m-1;i++ )
for (j=0;j<=n-1;j++ )
bz[i][j]=1; //初始化
for (i=0;i<=m-1;i++) {
gets(s);
for (j=0;j<=n-1;j++) if (s[j]==‘0’) bz[i][j]=0;
}
for (i=0;i<=m-1;i++)
for (j=0;j<=n-1;j++)
if (bz[i][j]) doit(i,j); //在矩阵中寻找细胞
printf(“NUMBER of cells=%d”,num);
return 0;
}

例二最少步数
在各种棋中,棋子的走法总是一定的,如中国象棋中马走“日”。有一位小学生就想如果马能有两种走法将增加其趣味性,因此,他规定马既能按“日”走,也能如象一样走“田”字。他的同桌平时喜欢下围棋,知道这件事后觉得很有趣,就想试一试,在一个(100*100)的围棋盘上任选两点A、B,A点放上黑子,B点放上白子,代表两匹马。棋子可以按“日”字走,也可以按“田”字走,俩人一个走黑马,一个走白马。谁用最少的步数走到左上角坐标为(1,1)的点时,谁获胜。现在他请你帮忙,给你A、B两点的坐标,想知道两个位置到(1,1)点可能的最少步数。
#include #include
#include using namespace std;
int dx[12]={-2,-2,-1,1,2,2,2,2,1,-1,-2,-2},
dy[12]={-1,-2,-2,-2,-2,-1,1,2,2,2,2,1};
int main(){ int s[101][101],que[10000][4]={0},x1,y1,x2,y2;
memset(s,0xff,sizeof(s)); //s数组的初始化
int head=1,tail=1; //初始位置入队 que[1][1]=1;que[1][2]=1;que[1][3]=0;
cin>>x1>>y1>>x2>>y2; //读入黑马和白马的出发位置
while(head<=tail) { //若队列非空,则扩展队首结点
for(int d=0;d<=11;d++){ //枚举12个扩展方向 int x=que[head][1]+dx[d]; //计算马按d方向跳跃后的位置 int y=que[head][2]+dy[d];
if(x>0&&y>0&&x<=100&&y<=100) if(s[x][y]==-1) { //若(x,y)满足约束条件
s[x][y]=que[head][3]+1; //计算(1,1)到(x,y)的最少步数
tail++; //(1,1)至(x,y)的最少步数入队
que[tail][1]=x; que[tail][2]=y; que[tail][3]=s[x][y];
if(s[x1][y1]>0&&s[x2][y2]>0){ //输出问题的解
cout<<s[x1][y1]<<endl;
cout<<s[x2][y2]<<endl;
system(“pause”);
return 0;
}
}
}
head++;
}
}

   例题三迷宫问题
   如下图所示,给出一个N*M的迷宫图和一个入口、一个出口。

编一个程序,打印一条从迷宫入口到出口的路径。这里黑色方块的单元表示走不通(用-1表示),白色方块的单元表示可以走(用0表示)。只能往上、下、左、右四个方向走。如果无路则输出“no way.”。
【深搜参考程序】

 #include <iostream>

using namespace std;
int n,m,desx,desy,soux,souy,totstep,a[51],b[51],map[51][51];
bool f;
int move(int x, int y,int step){
map[x][y]=step; //走一步,作标记,把步数记下来
a[step]=x; b[step]=y; //记路径
if ((xdesx)&&(ydesy)) {
f=1; totstep=step;
}
else {
if ((y!=m)&&(map[x][y+1]==0)) move(x,y+1,step+1); //向右
if ((!f)&&(x!=n)&&(map[x+1][y]==0)) move(x+1,y,step+1); //往下
if ((!f)&&(y!=1)&&(map[x][y-1]==0)) move(x,y-1,step+1); //往左
if ((!f)&&(x!=1)&&(map[x-1][y]0)) move(x-1,y,step+1); //往上
}
}
int main(){
int i,j;
cin>>n>>m; //n行m列的迷宫
for (i=1;i<=n;i++) //读入迷宫,0表示通,-1表示不通
for (j=1;j<=m;j++)
cin>>map[i][j];
cout<<“input the enter:;
cin>>soux>>souy; //入口
cout<<“input the exit:;
cin>>desx>>desy; //出口
f=0; //f=0表示无解;f=1表示找到了一个解
move(soux,souy,1);
if (f) {
for (i=1;i<=totstep;i++) //输出直迷宫的路径
cout<<a[i]<<","<<b[i]<<endl;
}
else cout<<“no way.<<endl;
return 0;
}

【广搜参考程序】
#include
using namespace std;
int u[5]={0,0,1,0,-1},
w[5]={0,1,0,-1,0};
int n,m,i,j,desx,desy,soux,souy,head,tail,x,y,a[51],b[51],pre[51],map[51][51];
bool f;
int print(int d){
if (pre[d]!=0) print (pre[d]); //递归输出路径
cout<<a[d]<<","<<b[d]<<endl;
}
int main(){
int i,j;
cin>>n>>m; //n行m列的迷宫
for (i=1;i<=n;i++) //读入迷宫,0表示通,-1表示不通
for (j=1;j<=m;j++)
cin>>map[i][j];
cout<<“input the enter:”;
cin>>soux>>souy; //入口
cout<<“input the exit:”;
cin>>desx>>desy; //出口
head=0;
tail=1;
f=0;
map[soux][souy]=-1;
a[tail]=soux; b[tail]=souy; pre[tail]=0;
while (head!=tail) { //队列不为空
head++;
for (i=1;i<=4;i++) { //4个方向
x=a[head]+u[i]; y=b[head]+w[i];
if ((x>0)&&(x<=n)&&(y>0)&&(y<=m)&&(map[x][y]0)) { //本方向上可以走
tail++;
a[tail]=x; b[tail]=y; pre[tail]=head;
map[x][y]=-1;
if ((xdesx)&&(ydesy)) { //扩展出的结点为目标结点
f=1;
print(tail);
break;
}
}
}
if (f) break;
}
if (!f) cout<<“no way.”<<endl;
return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最佳调度问题是一种经典的优化问题,分支限界法是一种常用的解决优化问题的算法,下面是该算法在解决最佳调度问题时的思路: 1. 确定目标函数和约束条件。 最佳调度问题的目标是使得完成所有任务的时间最小化,约束条件是每个任务的开始时间和结束时间要满足一定的限制条件。 2. 初始化可行解。 根据约束条件,初始化一个可行解,例如将每个任务按照开始时间从小到大排序。 3. 计算当前可行解的目标函数值。 根据目标函数的定义,计算当前可行解的目标函数值。 4. 构造子问题。 将当前可行解分成两个子问题,分别是将第一个任务提前一段时间和将第二个任务提前一段时间。这两个子问题的解空间都是当前可行解的子集。 5. 对子问题进行限界。 对于每个子问题,根据约束条件计算出它们的最早完成时间和最晚完成时间,然后将它们作为限界条件,舍弃不满足限界条件的子问题。 6. 选择下一个子问题。 从剩余的子问题中选择一个具有最小限界值的子问题,作为下一个需要求解的子问题。 7. 重复步骤3-6。 重复执行步骤3-6,直到找到最优解或者发现无解。 以上就是分支限界法解决最佳调度问题的基本思路。在实际应用中,还需要根据具体问题的特点进行一些优化,例如选择合适的限界策略和子问题分解方法等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值