哈密尔顿问题与哈密尔顿环

哈密尔顿问题与哈密尔顿环

1859年,爱尔兰数学家哈密尔顿(Hamilton)提出下列周游世界的游戏:在正十二面体的二十个顶点上依次标记伦敦、巴黎、莫斯科等世界著名大城市,正十二面体的棱表示连接这些城市的路线。试问能否在图中做一次旅行,从顶点到顶点,沿着边行走,经过每个城市恰好一次之后再回到出发点。

1. 问题概述

哥尼斯堡七桥问题是在寻找一条遍历图中所有边的简单路径,而哈密尔顿的周游世界问题则是在寻找一条遍历图中所有点的基本路径。在无向图G=<V,E>中,遍历G中每个顶点一次且仅一次的路径称为哈密尔顿路径(Hamiltonian path),遍历G中每个顶点一次且仅一次的回路称为哈密尔顿回路(Hamiltonian cycle)。具有哈密尔顿回路的图称为哈密尔顿图(英语:Hamiltonian graph,或Traceable graph)。

2. 求解算法思想

2.1 必要条件与充分条件

1.必要非充分条件:对V的每个非空真子集 S SS 均有 w ( G − S ) < = ∣ S ∣ w(G-S)<=|S|w(G−S)<=∣S∣ ,其中∣ S ∣ |S|∣S∣是S SS中的顶点数, w ( G − S ) w(G-S)w(G−S)表示G GG删去顶点集S SS后得到的图的连通分图个数。
2.充分非必要条件:如果图 G = < V , E > G=<V,E>G=<V,E> 是具有n ≥ 3 n\geq3n≥3个顶点的简单无向图,且在图G GG中每一对顶点的度数和都不小于n nn ,那么 G GG 中必然存在一条哈密尔顿回路。

2.2 P与NP问题

1.P问题:
在计算理论中,我们定义P类是确定形 单带图灵机在多项式时间内 可以判定的 语言类,即∏ k T I M E ( n k ) \prod_{k} TIME(n^k)k∏​TIME(nk)P大致对应于在计算机上实际可以解的问题类。
2.NP问题:
与之相对应的,还有N P NPNP类,N P NPNP类是具有多项式时间验证机的语言类,其中验证机的定义如下:语言A的验证机是一个算法V VV,其中A = { w ∣ 对 某 个 字 符 串 c , V 接 受 < w , c > } A = {w | 对某个字符串c, V 接受<w,c>}A={w∣对某个字符串c,V接受<w,c>}
3.多项式时间可验证性:
因为只根据w的长度来度量验证机的时间 ,所以多项式时间验证机在w的长度的多项式时间内运行。如果语言A AA有一个多项式时间验证机,我们就称它是多项式时间可验证的。
4.成员与成员资格证书:
验证机利用额外的信息(即上述定义中的符号 c cc )来验证字符串 w ww 是 A AA 的成员。该信息称为 A AA 的成员资格证书.或证明。注意,对于多项式验证机,证书具有多项式的长度( w ww 的长度),因为这是该验证机在它的时间界限内所能访问的全部信息长度。
5.N P 的意思就是非确定型多项式时间,这也是使用非确定型多项式时间图灵机的一个特征。一个非常重要的定理就是:一个语言在 N P NPNP 中,当且仅当它能被某个非确定型多项式时间图灵机判定。

2.3 判定方法

2.3.1 基本必要条件
设图G = < V , E > G=<V, E>G=<V,E>是哈密顿图,则对于v vv的任意一个非空子集S SS,若以∣ S ∣ |S|∣S∣表示S SS中元素的数目,G − S G-SG−S表示G GG中删除了S中的点以及这些点所关联的边后得到的子图,则W ( G − S ) ≤ ∣ S ∣ W(G-S)\leq|S|W(G−S)≤∣S∣成立.其中W ( G − S ) W(G-S)W(G−S)是G − S G-SG−S中联通分支数。
2.3.2 Dirac定理(充分条件)
设一个无向图中有N个顶点,若所有顶点的度数大于等于N/2,则哈密顿回路一定存在.(N/2指的是⌈N/2⌉,向上取整)
2.3.3 竞赛图(哈密顿通路)
N(N>=2)阶竞赛图一点存在哈密顿通路.

3. 算法具体步骤

void Hamilton(int ans[maxN + 7], bool map[maxN + 7][maxN + 7], int n){
    Init();
    bool visit[maxN + 7] = {false};
    for(i = 1; i <= n; i++) if(map[s][i]) break;
    t = i;//取任意邻接与s的点为t
    visit[s] = visit[t] = true;
    ans[0] = s;
    ans[1] = t;
    while(true){
        while(true){//从t向外扩展
            for(i = 1; i <= n; i++){
                if(map[t][i] && !visit[i]){
                    ans[ansi++] = i;
                    visit[i] = true;
                    t = i;
                    break;
                }
            }
            if(i > n) break;
        }
        //将当前得到的序列倒置,s和t互换,从t继续扩展,相当于在原来的序列上从s向外扩展
        Hreverse(ansi, ans, i, w)
        temp = s;
        s = t;
        t = temp;
        while(true){//从新的t继续向外扩展,相当于在原来的序列上从s向外扩展
            for(i = 1; i <= n; i++){
                if(map[t][i] && !visit[i]){
                    ans[ansi++] = i;
                    visit[i] = true;
                    t = i;
                    break;
                }
            }
            if(i > n) break;    
        }
        if(!map[s][t]){//如果s和t不相邻,进行调整
            for(i = 1; i < ansi - 2; i++)//取序列中的一点i,使得ans[i]与t相连,并且ans[i+1]与s相连
                if(map[ans[i]][t] && map[s][ans[i + 1]])break;
            w = ansi - 1;
            i++;
            t = ans[i];
            reverse(ans, i, w);//将从ans[i +1]到t部分的ans[]倒置
        }//此时s和t相连
        if(ansi == n) return;//如果当前序列包含n个元素,算法结束
        for(j = 1; j <= n; j++){//当前序列中元素的个数小于n,寻找点ans[i],使得ans[i]与ans[]外的一个点相连
            if(visit[j]) continue;
            for(i = 1; i < ansi - 2; i++)if(map[ans[i]][j])break;
                if(map[ans[i]][j]) break;
        }
        s = ans[i - 1];
        t = j;//将新找到的点j赋给t
        reverse(ans, 0, i - 1);//将ans[]中s到ans[i-1]的部分倒置
        reverse(ans, i, ansi - 1);//将ans[]中ans[i]到t的部分倒置
        ans[ansi++] = j;//将点j加入到ans[]尾部
        visit[j] = true;
    }

4. 性能分析

时间复杂度
1.Dirac定理:如果说每次到步骤5算一轮的话,那么由于每一轮当中至少有一个节点被加入到路径 S → T S \rightarrow TS→T 中,所以总的轮数肯定不超过n轮,所以时间复杂度为 O ( n 2 ) O(n^2)O(n2) .空间上由于边数非常多,所以采用邻接矩阵来存储比较适合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值