图论 —— 图的遍历 —— 哈密顿问题

【基本概念】

  1. 哈密尔顿通路:经过图中每个结点且仅经过一次的通路。
  2. 哈密尔顿回路:经过图中每个结点且仅经过一次的回路。
  3. 哈密尔顿图:存在哈密尔顿回路的图。
  4. 竞赛图:每对顶点之间都有一条边相连的有向图,n 个顶点的竞赛图称为 n 阶竞赛图。
  5. 与欧拉回路的对比:欧拉回路是指不重复地走过所有路径的回路;哈密尔顿回路是指不重复地走过所有点并且最后回到起点的回路。

【判定】

1.哈密尔顿通路的判定

设一无向图有 n 个顶点,u、v 为图中任意不相邻的两点,deg(x) 代表 x 的度数

若 deg(u)+deg(v)\geqslant n-1  成立,则图中存在哈密尔顿通路

2.哈密尔顿回路的判定:Dirac 定理

设一无向图有 n 个顶点,u、v 为图中任意不相邻的两点,deg(x) 代表 x 的度数

deg(u)+deg(v)\geqslant n,则图中存在哈密尔顿回路

推论:对于 n \geqslant 3 的无向图,若其任一一点 u 的度数 deg(u)\geqslant \frac n2 ,则图中存在哈密尔顿回路

3.竞赛图

对于 n \geqslant 2 的竞赛图,一定存在哈密尔顿通路

【dfs 搜索求哈密尔顿回路】

以每个点为起点进行搜索,直到形成回路

#include <iostream>  
#include <cstring>  
#define N 101
using namespace std;  
int n,m;
int u,v;
int g[N][N];
int vis[N],appear[N];
int ans[N],num[N];
int length;
 
void dfs(int last,int i)//last表示上次访问的点 
{  
    vis[i]=1;//标记为已经访问过  
    appear[i]=1;//标记为已在一张图中出现过  
    
    ans[length++]=i;//记录答案  
    for(int j=1;j<=num[i];j++)  
    {  
        if(g[i][j]==x&&g[i][j]!=last)//回到起点构成哈密顿环  
        {   
        	ans[++length]=g[i][j];//存储答案
            
       		for(int i=1;i<=length-1;i++) //找到了一个环,输出ans
       			cout<<ans[i]<<' ';  
    		cout<<ans[length]<<endl;
            
       		length--;//长度-1
        	break;
        }  
        if(!vis[g[i][j]])//遍历与i相关联的所有未访问的点。  
            dfs(i,g[i][j]); 
    }  
    length--;  
    vis[i]=0;//回溯
}  
int main()  
{  
    memset(vis,0,sizeof(vis));  
    memset(appear,0,sizeof(appear));  
    
    cin>>n>>m; //读入点数与边数
    for(int i=1;i<=m;i++)
    {   
        cin>>u>>v; //读入两点
        g[u][++num[v]]=v;//记录u-v的边
        g[v][++num[u]]=u;//记录v-u的边
    }  
  
    for(x=1;x<=n;x++) //枚举每一个点,将其作为起点来尝试访问
    {  
        if(!appear[x])//如果点x不在之前曾经被访问过的图里  
        {  
            length=0;//记录答案的长度  
            dfs(0,x);  
        }  
    }  
    return 0;  
} 

【Dirac 定理下构造无向图的哈密顿回路】

1.过程

  1. 任意找两个相邻的节点 S 和 T,在其基础上扩展出一条尽量长的没有重复结点的路径,即如果 S 与结点 v 相邻,而且 v 不在路径 S -> T 上,则可以把该路径变成 v -> S -> T,然后 v 成为新的 S。从 S 和 T 分别向两头扩展,直到无法继续扩展为止,即所有与 S 或 T 相邻的节点都在路径 S -> T 上
  2. 若 S 与 T 相邻,则路径 S -> T 形成了一个回路
  3. 若 S 与 T 不相邻,可以构造出来一个回路。设路径 S -> T 上有 k+2 个节点,依次为 S, v1, v2, ..., vk, T。可以证明存在节点 vi(i属于[1, k]),满足 vi 与 T 相邻,且 vi+1 与 S 相邻,找到这个节点 vi,把原路径变成 S -> vi -> T -> vi+1 -> S,即形成了一个回路.
  4. 到此为止,已经构造出来了一个没有重复节点的的回路,如果其长度为 N,则哈密顿回路就找到了。如果回路的长度小于 N,由于整个图是连通的,所以在该回路上,一定存在一点与回路之外的点相邻。那么从该点处把回路断开,就变回了一条路径,同时还可以将与之相邻的点加入路径。再按照步骤 1 的方法尽量扩展路径,则一定有新的节点被加进来,接着回到路径 2

2.伪代码

设 s 为哈密顿回路的起始点,t 为哈密顿回路中终点 s 之前的点,ans[] 为最终的哈密顿回路

  1. 初始化,令 s = 1,t 为 s 的任意一个邻接点.
  2. 如果 ans[] 中元素的个数小于 n,则从 t 开始向外扩展,如果有可扩展点 v,放入 ans[] 的尾部,并且 t=v,并继续扩展,如无法扩展进入步骤 3
  3. 将当前得到的 ans[] 倒置,s 和 t 互换,从 t 开始向外扩展,如果有可扩展点 v,放入 ans[] 尾部,并且 t=v,并继续扩展,如无法扩展进入步骤 4
  4. 如果当前 s 和 t 相邻,进入步骤 5,否则,遍历 ans[],寻找点 ans[i],使得 ans[i] 与 t 相连并且 ans[i +1] 与 s 相连,将从 ans[i+1] 到 t 部分的 ans[] 倒置,t=ans[i+1],进入步骤 5
  5. 如果当前 ans[] 中元素的个数等于 n,算法结束,ans[] 中保存了哈密顿回路(可看情况是否加入点 s),否则,如果 s 与 t 连通,但是 ans[] 中的元素的个数小于 n,则遍历 ans[],寻找点 ans[i],使得 ans[i] 与 ans[] 外的一点(j)相连,则令 s=ans[i-1],t=j,将 ans[] 中 s 到 ans[i-1] 部分的 ans[] 倒置,将 ans[] 中的 ans[i] 到 t 的部分倒置,将点 j 加入到 ans[] 的尾部,转步骤 2

3.时间复杂度

如果说每次到步骤 5 算一轮的话,那么由于每一轮当中至少有一个节点被加入到路径 S -> T 中,所以总的轮数肯定不超过 n 轮,所以时间复杂度为O(n^2)

空间上由于边数非常多,所以采用邻接矩阵来存储比较适合

4.实现

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<ctime>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 1001
#define MOD 16007
#define E 1e-6
#define LL long long
using namespace std;
bool G[N][N];
bool vis[N];
int ans[N];

void Reverse(int arv[N],int s,int t){//将数组anv从下标s到t的部分的顺序反向
    int temp;
    while(s<t){
        swap(arv[s],arv[t]);
        s++;
        t--;
    }
}

void Hamilton(int n){

    int t;
    int s=1;//初始化取s为1号点
    for(int i=1;i<=n;i++)
        if(G[s][i]){
            t=i;//取任意邻接与s的点为t
            break;
        }

    memset(vis,false,sizeof(vis));
    vis[s]=true;
    vis[t]=true;
    ans[0]=s;
    ans[1]=t;


    int ansi=2;
    while(true){

        //从t向外扩展
        while(true){
            int i;
            for(i=1;i<=n;i++){
                if(G[t][i] && !vis[i]){
                    ans[ansi++]=i;
                    vis[i]=true;
                    t=i;
                    break;
                }
            }
            if(i>n)
                break;
        }

        //将当前得到的序列倒置
        Reverse(ans,0,ansi-1);

        //s和t互换
        swap(s,t);

        while(true){//从t继续扩展,相当于在原来的序列上从s向外扩展
            int i;
            for(i=1;i<=n;i++){
                if(G[t][i] && !vis[i]){
                    ans[ansi++]=i;
                    vis[i]=true;
                    t=i;
                    break;
                }
            }
            if(i>n)
                break;
        }


        //如果s和t不相邻,进行调整
        if(!G[s][t]){
            //取序列中的一点i,使得ans[i]与t相连,并且ans[i+1]与s相连
            int i;
            for(i=1;i<ansi-2;i++)
                if(G[ans[i]][t]&&G[s][ans[i+1]])
                    break;
            i++;
            t=ans[i];
            Reverse(ans,i,ansi-1);//将从ans[i+1]到t部分的ans[]倒置
        }//此时s和t相连


        //如果当前序列包含n个元素,算法结束
        if(ansi==n)
            return;

        //当前序列中元素的个数小于n,寻找点ans[i],使得ans[i]与ans[]外的一个点相连
        int i,j;
        for(j=1;j<=n;j++){
            if(vis[j])
                continue;
            for(i=1;i<ansi-2;i++)
                if(G[ans[i]][j])
                    break;
            if(G[ans[i]][j])
                break;
        }
        s=ans[i-1];
        t=j;//将新找到的点j赋给t
        Reverse(ans,0,i-1);//将ans[]中s到ans[i-1]的部分倒置
        Reverse(ans,i,ansi-1);//将ans[]中ans[i]到t的部分倒置
        ans[ansi++]=j;//将点j加入到ans[]尾部
        vis[j]=true;
    }
}

int main(){
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF&&(n||m)){

        n*=2;
        for(int i=0;i<=n;i++){
            for(int j=0;j<=n;j++){
                if(i==j){
                    G[i][j]=false;
                    G[j][i]=false;
                }
                else{
                    G[i][j]=true;
                    G[j][i]=true;
                }
            }
        }

        int ansi=0;
        memset(ans, 0, sizeof(ans));
        for(int i=1;i<=m;i++){
            int x,y;
            scanf("%d%d",&x,&y);
            G[y][x]=false;
            G[x][y]=false;
        }

        Hamilton(n);
        for(int i=0;i<n;i++)
            printf("%d ", ans[i]);
        printf("\n");
    }
    return 0;
}

【N 阶竞赛图下构造有向图的哈密顿通路】

含有N个顶点的有向图,且每对顶点之间都有一条边的图,一定存在哈密顿通路

int ans[105];
int map[105][105];
void Insert(int arv[], int &len, int index, int key){
    if(index>len)
        index=len;
    len++;
    for(int i=len-1; i>=0; i--){
        if(i!=index && i)
            arv[i]=arv[i-1];
        else{
            arv[i]=key;
            return;
        }
    }
}
void Hamilton(int n){
    int ansi = 1;
    ans[ansi++] = 1;
    for(int i=2; i<=n; i++){//第一种情况,直接把当前点添加到序列末尾
        if(map[i][ans[ansi-1]]==1)
            ans[ansi++]=i;
        else{
            int flag=0;
            //当前序列从后往前找到第一个满足条件的点j,使得存在<Vj,Vi>且<Vi,Vj+1>.
            for(int j=ansi-2; j>0; j--){
                if(map[i][ans[j]]==1){//找到后把该点插入到序列的第j+1个点前.
                    flag=1;
                    Insert(ans,ansi,j+1,i);
                    break;
                }
            }
            if(!flag)//否则说明所有点都邻接自点i,则把该点直接插入到序列首端.
                Insert(ans,ansi,1,i);
        }
    }
}
int main(){
    int n,m;
    scanf("%d", &n);
    m=n*(n-1)/2;
    for(int i=0;i<m;i++){
        int u,v;
        scanf("%d%d",&u,&v);
        if(u<v)
            map[v][u]=1;
    }
    Hamilton(n);
    for(int i=1;i<=n;i++)
        printf(i==1? "%d":" %d",ans[i]);
    printf("\n");
    return 0;
}
  • 10
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值