解决vscode的导包问题 然后重启vscode即可。该配置对同一个项目的其他文件、文件夹均有效。该种方式只能针对该文件使用,更换到同一个项目的其他目录就无法使用了。打开设置->settings.json向其中添加。2.更改vscode的配置。
文生图的开源大模型 Huggingface模型下载:*i*AI**快站模型免费加速下载:*Playground v2.5 在审美质量方面显著超越当前最先进的开源模型 SDXL 和 PIXART-α,以及 Playground v2。由于 Playground V2.5 和 SDXL 之间存在较大的性能差距,因此官方还将它与当前闭源模型如 DALL-E 3 和 Midjourney 5.2 进行了审美质量比较,发现 Playground v2.5 也比这些闭源模型相比表现会更好。
标准扩散模型(standard diffusion)和潜在(latent diffusion)扩散模型的关键区别、对潜在扩散模型的认识 潜在扩散模型通过在低维潜在空间的扩散过程,可以减少内存和计算的复杂性。而standard diffusion是在像素级别的空间(actual pixel space)进行扩散.
PostgreSQL的使用 进入docker容器内部,操作数据库,上述命令是以交互式命令进入了容器的内部,对于docker的一些使用,也可以参考我之前写的博文进行学习。命令解释:使用psql连接端口号为5432,用户为postgres,根据自己所建立的用户进行修改。1.首先,使用docker进行安装pgvector数据库,具体的安装步骤可以查看我之前发的博文。postgreSQL的命令。
vscode使用Black Formatter以及Flake8实现代码格式化 Black Formatter则可以实现在保存时,自动对格式不规范的进行修改为规范的。两个插件搭配使用即可得到舒适的coding体验。简单介绍一下这两个插件的功能,flake8可以实现对python代码风格的检测,对空格换行等内容都会有提示。flake8直接下载即可。
ubuntu上使用阿里镜像源安装docker,以及配置docker的镜像环境 { “registry-mirrors”: [“放链接地址”] }如果使用的不是阿里云的云服务器,最好还需要改一下dns解析地址。将开头114.114.114.114的修改为。2.添加阿里云镜像源和密钥。3.添加阿里云镜像源。(阿里的dns地址)然后reboot重启。然后重启docker。
在服务器上搭配大模型的运行环境详细版(docker+ollama+langchain等工具) 1.anaconda3环境安装anaconda3导出环境2.前置的docker软件安装、docker镜像如何进行转移添加用户3.gpu环境配置删除已安装的cuda环境4.pycharm配置5.langchain环境搭配langchain使用的技术有Agent、memory、分词器、pgvector直接pip安装,后面缺什么按需要装什么就行了在后台一直运行该项目6.网络方面。
langchain如何进行异步加载(该文主要针对Agent) a.astream_events解释:a为Agent_executor,这个for循环,会将在进行流式输出的事件都给循环一下,其中的判断是看是否到了模型输出的部分。而我们想要的东西仅仅是在llm_stream过程中的,因而进行判断。include_names是可以根据名字排除掉一些不需要的事件。在使用langchain框架,当希望让模型输出的数据可以在前端进行流式输出时,可以采用该方法。除了Agent之外的如何进行流式输出可以查看官方文档里面的,有问题欢迎大家在评论区进行留言。
服务器使用配置unsloth以及docker,ollama,以及对整个服务器环境的配置 需要做的:1.安装anaconda32.安装docker,docker的gpu环境3.安装依赖环境4.在docker中安装ollama,安装pgvector等5.配置unsloth6.让LLaMA3运行起来。
对比学习与垂直领域微调 之前也介绍了,不同任务加的prompt是不同的,如果把不同任务的样本放到一个batch里,模型训练时候就容易出现偷懒的情况,有时候会根据pormpt的内容来区分正负例,降低任务难度,这是不利于对比学习效果的。具体代码实现也非常简单,如下所示。文档正例是和问题密切相关的文档片段,文档负例是和问题不相关的文档片段,可以是精挑细选的(难例挖掘出来的,下一小节介绍),也可以是随机出来的。如果是随机出来的话,完全可以**用同一个batch里,其他问题的文档正例当作某一个问题的文档负例,对比学习与垂直领域微调。
大模型+强化学习的基本综述 在实验中上述模型也有一些弱点,如:经过强化学习精调的模型损失了之前的部分语言能力,对新对象的泛化能力较强,但对新能力的泛化能力较差。该方法通过记录模型在环境中的探索过程,并在模型失败时,利用大模型的思考内容推理出问题所在,并将其记录下来。,在游戏,机器人或者其它 Agent 领域中,环境对于大模型来说是未知的,可以采取行动的选项是固定而非由模型自定义的。进一步的研究发现,上述方法可能隐含着 A>B、B>C,可推出 A>C 的逻辑,而实际上在石头剪刀布这类游戏中,A>C 可能并不成立。
装本地知识库 在github将该项目拉取下来,后续步骤的很多内容可以直接使用该项目中给的例子,进行简单修改就可直接使用。如果要使用自己微调的模型,则可以对rag.py里面模型对应部分的内容进行修改即可。进入到步骤1所说的cookbook目录下。2.安装向量知识库,使用的docker。给大模型添加RAG知识库和搜索的功能。在此默认已经安装好了ollama。启动刚刚安装的docker。接下来使用命令,启动项目。1.安装phidata。
Google的MLP-MIXer的复现(pytorch实现) 2.在处理两个差异的时候,如输入维度[32,196,512],其中代表的意思分别为batch_size为32,196为图片在经过patch之后的224*224输入之后经过patch=16,变为14 * 14即196,512会在二维卷积处理之后输出的channel类似。在nn.linear那儿的in_channel与第三个维度保持一致,就可以不必将其三维的转换为二维的。在将flax框架的代码改为pytorch实现的时候,还是踩了不少的坑,在此讲一下,希望后面做的人,可以避免。