【模拟集成电路】PLL设计与仿真(CPPLL+基础+Simulink仿真+电路仿真)
0 前言
学习笔记,分享一下,参考了《DESIGN OF CMOS PHASE‑LOCKED LOOPS_Behzad Razavi》,为了控制篇幅,已经尽量的减少内容了,内容比较“系统化”,从简单Ⅰ型PLL传输函数分析,再到到三阶的 C P P L L CPPLL CPPLL 系统函数分析,其中演化的原因也一并列出。在了解了 C P P L L CPPLL CPPLL 的传输函数后,紧接着就是根据 C P P L L CPPLL CPPLL 的系统函数,通过 m a t l a b matlab matlab 计算最优的系统参数。得到系统参数后,通过 S i m u l i n k Simulink Simulink 进行建立相关模块的模型,并根据特定系统参数对CPPLL的整体模型进行仿真。最后,基于 T S M C 18 TSMC18 TSMC18 工艺,根据特定的参数设计相关的模块电路,进行了简单的仿真并和 S i m u l i n k Simulink Simulink 仿真结果进行了简单对比。
设计文件可自取~,仅供学习参考: (用的matlab R2021a)
CPPLL_Simulink模型:https://mbd.pub/o/bread/aJackphp
CPPLL电路,工程+testbench:https://mbd.pub/o/bread/aJackpdw
1 简单PLL分析
大多数振荡器必须“锁相”,以最大限度地减少其频率漂移和相位噪声,在最简单的形式中,PLL由一个 V C O VCO VCO 、 P D PD PD 和 L P F LPF LPF 组成。本节主要是定量计算PLL的相关参数与其环路的影响,了解不同结构的优劣,并在设计过程中合理的考虑。
1.1静态行为
根据“锁定”的特点, φ i n − φ o u t = c o n s t φ_{in}-φ_{out}=const φin−φout=const 有
也即
为了使输入和输出边缘保持恒定的相位差,周期必须始终相等。因此,如果环路被锁定,则VCO以等于
f
i
n
f_{in}
fin的频率运行。
定量分析:在图 1.1(b)中的曲线图中,可以看出
V
C
O
VCO
VCO 需要一定的控制电压
V
1
V_1
V1 来提供
(
f
o
u
t
=
f
i
n
)
(f_{out}=f_{in} )
(fout=fin)。这样的电压必须由
L
P
F
LPF
LPF 产生,低通滤波器计算
V
P
D
V_{PD}
VPD 的平均值。转到图 1.1(c)所示的
P
D
PD
PD 特性,
V
P
D
=
V
1
V_{PD} =V_1
VPD=V1转化为一定的相位误差
Δ
φ
1
=
V
1
/
K
P
D
Δφ_1=V_1/K_{PD}
Δφ1=V1/KPD。Δφ_1被称为“静态相位偏移”,它可以通过增加
K
P
D
K_{PD}
KPD(或
K
v
c
o
K_{vco}
Kvco)来降低。
1.2倍频
倍频是 PLL 的一个重要而有用的特性。假设一个精确、稳定的参考振荡器(例如晶体振荡器)产生20 MHz的输出,我们希望从中产生4 GHz的时钟。一种方法是考虑20 MHz参考的200次谐波,但这样的分量非常小,容易产生极端噪声。相比之下,PLL提供了一个很好的解决方案。如图1.2(a)所示,
使用包含4-GHz VCO的环路,但在反馈路径中插入“分频器”,如果环路被锁定,则PD输入端为恒定的相位差,从而PD输入端检测到相等的频率,即,
f
B
=
f
R
E
F
f_B=f_{REF}
fB=fREF,产生
f
o
u
t
=
M
f
B
=
M
f
R
E
F
f_{out}=Mf_B=M{f_{REF}}
fout=MfB=MfREF,它还提供了一个可编程的输出频率:如果
M
M
M 从
200
200
200 到
201
201
201 ,
f
o
u
t
f_{out}
fout 从
4
G
H
z
4 GHz
4GHz 变为
201
×
20
M
H
z
=
4.02
G
H
z
201×20 MHz=4.02 GHz
201×20MHz=4.02GHz。
1.3动态行为
该部分内容是描述PLL如何进行动态调节的,考虑PLL系统中相位或频率的阶跃,并分析PLL动态调整过程,
1.3.1频率阶跃响应过程
首先考虑频率阶跃行为:如图 1.3(b)所示,在
t
=
t
1
t=t_1
t=t1 时,输入频率从
ω
1
ω_1
ω1 跳到
ω
1
+
∆
ω
ω_1+∆ω
ω1+∆ω 。LPF最初
V
c
o
n
t
=
V
1
V_{cont}=V_1
Vcont=V1, $ VCO $仍在
ω
1
ω_1
ω1 下运行,输入和输出频率保持∆ω的差,随后它们的相位差增大。
P
D
PD
PD 产生的越来越宽的脉冲,
V
c
o
n
t
V_{cont}
Vcont 逐渐升高,从而使
ω
o
u
t
ω_{out}
ωout 升高。一直持续到
ω
o
u
t
=
ω
1
+
∆
ω
ω_{out}=ω_1+∆ω
ωout=ω1+∆ω ,此时环路再次锁定。锁定后,此时PD输出脉冲现在更宽,从而产生更大的控制电压。
如果回路阻尼不足(不够稳定),
V
c
o
n
t
V_cont
Vcont 可能会出现“振铃”现象。我们可以根据开环极点和零点以及相位裕度等参数来制定闭环响应。环路从
t
1
t_1
t1 到
t
2
t_2
t2 是解锁的,因为
φ
o
u
t
−
φ
i
n
φ_{out}-φ_{in}
φout−φin 在这段时间内随时间变化。
1.3.2相位阶跃响应过程
如图1.4所示,在
t
=
t
1
t=t_1
t=t1 时输入的上升沿发生相位阶跃,这意味着下一个输入边缘发生得比预期的更早或更晚。
V
c
o
n
t
V_{cont}
Vcont 和输出相位都不能瞬间改变;因此,相位阶跃立即转化为相位误差,产生更宽的PD脉冲。
V
c
o
n
t
V_{cont}
Vcont 和
ω
o
u
t
ω_{out}
ωout 的逐渐变化允许
V
C
O
VCO
VCO 积累额外的相位,并最终赶上输入。这个过程一直持续到最终两个信号的边沿对齐,最终在
t
2
t_2
t2 时的
V
c
o
n
t
V{cont}
Vcont 和
φ
o
u
t
−
φ
i
n
φ_{out}-φ_{in}
φout−φin与
t
1
t_1
t1 时相同。
PLL对频率阶跃的响应表明,即使
ω
o
u
t
ω_{out}
ωout 具有正确的值(与
t
=
t
2
t=t_2
t=t2时的值相同),环路也不会在
t
=
t
a
t=t_a
t=ta 处稳定。这是因为相位误差(PD输出脉冲的宽度)还没有达到适当的值。只有当积分相关的
∆
φ
1
∆φ_1
∆φ1 和
ω
o
u
t
ω_{out}
ωout 都稳定时,环路才稳定,即“相位采集”和“频率采集”都必须完成。
1.4传输函数
主要关注,(1)如何解释和确定传递函数?(2)如何评估环路的稳定性?(3)环路滤波器表现出什么特性(4) 环路在时域中的表现如何。
1.4.1简单PLL的传输函数
传输函数
下面的讨论中 ω ω ω 不是输入或 V C O VCO VCO 频率,而是输入过量相位 φ i n ( t ) φ_{in} (t) φin(t)的变化速率。
首先对于PLL系统,我们主要针对“过量相位”进行建模,因此 V C O VCO VCO 必须建模为一个积分器,因为 P D PD PD 测量的是输出相位差,而 V C O VCO VCO 将 V c o n t V_{cont} Vcont进行积分后才能得到相位量; L P F LPF LPF 考虑为一阶环路滤波器,线性模型如图1.5所示
因此,开环传输函数可以表示为
H
o
p
e
n
(
s
)
=
[
K
P
D
/
(
1
+
s
/
ω
L
P
F
)
]
K
V
C
O
/
s
H_{open} (s)=[K_{PD}/(1+s/ω_{LPF})]K_{VCO}/s
Hopen(s)=[KPD/(1+s/ωLPF)]KVCO/s,闭环传输函数可以写为
从控制理论来看,将分母表示为
s
2
+
2
ζ
ω
n
s
+
ω
n
2
s^2+2ζω_n s+ω_n^2
s2+2ζωns+ωn2 ,的形式,其中
ζ
ζ
ζ 和
ω
n
ω_n
ωn 分别是“阻尼因子”和“固有频率”。因此可以得到
图3.9的拓扑被称为 “I型”PLL,因为它的开环传递函数包含一个理想积分器(原点处的一个极点),由于该PLL系统为低通系统,所以如果
ω
m
ω_m
ωm 变化缓慢,
∣
H
∣
≈
1
|H|≈1
∣H∣≈1 ,PLL输出为
V
o
u
t
≈
V
1
c
o
s
(
ω
0
t
+
α
c
o
s
ω
m
t
)
V_{out}≈V_1cos(ω_0t+αcosω_mt)
Vout≈V1cos(ω0t+αcosωmt),表现出与输入相同的相位偏移。如果
ω
m
ω_m
ωm 超过环路带宽,则输出相位波动较小。
波特图
通过相关参数和波特图,可以更加直观的解释 ζ ζ ζ 对 ω L P F ω_{LPF} ωLPF 、 K P D K_{PD} KPD 和 K V C O K_{VCO} KVCO 的依赖,简单 P L L PLL PLL 开环传输函数为 H o p e n ( s ) = [ K P D / ( 1 + s / ω L P F ) ] K V C O / s H_{open} (s)=[K_{PD}/(1+s/ω_{LPF})]K_{VCO}/s Hopen(s)=[KPD/(1+s/ωLPF)]KVCO/s,因此 ω < ω L P F ω<ω_{LPF} ω<ωLPF 时,幅频特性以 20 d B / d e c 20dB/dec 20dB/dec 的速率下降,当 ω > ω L P F ω>ω_{LPF} ω>ωLPF时,波特图以 40 d B / d e c 40dB/dec 40dB/dec 的速率下降,由于原点处的极点,相位初始从 90 90 90 开始,当 ω = ω L P F ω=ω_{LPF} ω=ωLPF 时,相位达到 135 ° 135° 135° ,相位裕度很小,波特图如图 1.6 所示。
ζ
ζ
ζ 对
K
P
D
K_{PD}
KPD 和
K
V
C
O
K_{VCO}
KVCO的依赖性是直接的,增加
K
P
D
K_{PD}
KPD 和
K
V
C
O
K_{VCO}
KVCO 只是将增益图向上移动,增加
ω
u
ω_u
ωu ,但不会改变相位响应。因此,相位裕度减小。
L
P
F
LPF
LPF 抑制了
P
D
PD
PD 产生的高频分量。方程 (1.5) 表明,如果
ω
L
P
F
ω_{LPF}
ωLPF减少,
ζ
ζ
ζ 会下降,如果降低
ω
L
P
F
ω_{LPF}
ωLPF可以以减弱
P
D
PD
PD 噪声注入,但不可避免地会降低稳定性。令
∣
H
o
p
e
n
(
s
)
∣
=
1
|H_{open} (s)|=1
∣Hopen(s)∣=1 可以来计算单位增益带宽
ω
u
ω_u
ωu :
解得
在
ω
u
ω_u
ωu 处开环相位可以表示为
如果
ω
L
P
F
ω_{LPF}
ωLPF 减少,
ω
u
ω_u
ωu 也减少,导致
t
a
n
−
1
tan^{-1}
tan−1 的自变量更大,因此相位裕度更小。
倍频
对于添加倍频器的
P
L
L
PLL
PLL ,其开环传输函数可以表示为
H
o
p
e
n
(
s
)
=
[
K
P
D
/
(
1
+
s
/
ω
L
P
F
)
]
K
V
C
O
/
s
∗
(
1
/
M
)
H_{open} (s)=[K_{PD}/(1+s/ω_{LPF})]K_{VCO}/s*(1/M)
Hopen(s)=[KPD/(1+s/ωLPF)]KVCO/s∗(1/M),闭环传输函数可以表示为
可以得到
方程(1.10)表明,随着
M
M
M 的增加,环路变得更加稳定。从波特图也可以看出,我们观察到分频器会削弱反馈,并且增加了相位裕度。这些趋势是
I
I
I 型
P
L
L
PLL
PLL (和运算放大器)的特性,与
I
I
II
II 型回路的行为形成对比。
1.5简单PLL的缺点
I型PLL面临三个权衡:
ζ
ζ
ζ 和
ω
L
P
F
ω_{LPF}
ωLPF 之间,
ζ
ζ
ζ 和
K
P
D
K_{PD}
KPD 之间,以及采集范围和
ω
L
P
F
ω_{LPF}
ωLPF 之间。
首先,如果减少
ω
L
P
F
ω_{LPF}
ωLPF 来抑制
V
c
o
n
t
V_{cont}
Vcont 的干扰,则环路变得不那么稳定。其次,如果我们增加
K
P
D
K_{PD}
KPD 以最小化静态相位误差,则环路变得不那么稳定。这两种趋势都严重限制了性能。
如果
ω
i
n
ω_{in}
ωin 和
ω
i
n
ω_{in}
ωin 之间的初始差很大,那么由
(
k
V
0
V
1
c
o
s
(
ω
i
n
−
ω
o
u
t
)
t
)
(kV_0 V_1 cos(ω_{in}-ω_{out})t)
(kV0V1cos(ωin−ωout)t)给出的
P
D
PD
PD 输出在
L
P
F
LPF
LPF 中经历显著衰减,无法以足够的强度调制
V
C
O
VCO
VCO 。因此,
ω
i
n
ω_{in}
ωin 处的
V
C
O
VCO
VCO 输出边带以及
P
D
PD
PD 输出中的直流分量太小,无法启动锁定捕获。这里的关键点是,如果选择一个小的
ω
L
P
F
ω_{LPF}
ωLPF 来抑制对
V
c
o
n
t
V_{cont}
Vcont 的干扰,那么采集范围会按比例减小。在实践中,采集范围将非常窄,使得回路很容易因
P
V
T
PVT
PVT 变化而失效。
2基于电荷泵的PLL(CPPLL)
2.1电荷泵
参考:【模拟CMOS集成电路设计】电荷泵(Charge bump)设计与仿真(示例:栅极开关CP+轨到轨输入运放+基于运放CP)
2.2基本CPPLL
图 2.1 是一个包含
P
F
D
/
C
P
/
电容器
PFD/CP/电容器
PFD/CP/电容器 级联的PLL,如果环路锁定,则有
f
o
u
t
=
f
i
n
f_{out}=f_{in}
fout=fin ,并且
V
c
o
n
t
V_{cont}
Vcont 是一个有限的值。
为了使
V
c
o
n
t
V_{cont}
Vcont 保持恒定,电荷泵必须不向
C
1
C_1
C1 注入净电荷,这要求
φ
o
u
t
=
φ
i
n
φ_{out}=φ_{in}
φout=φin 。换言之,无论
f
i
n
f_{in}
fin 、
K
V
C
O
K_{VCO}
KVCO 和
I
P
I_P
IP 等参数如何,环路锁定时“静态”相位误差为零。由于CP/电容器组合的积分作用,该特性与I型PLL的行为形成对比。
2.3 PFD/CP/电容器传递函数
2.3.1构建传递函数
为了定量分析PLL系统,下面对PLL系统的传递函数进行分析,对于CP来说,由于输入量为相位,输出量为电压,且期间有大量开关电路,因此考虑开始在时域中进行分析,计算脉冲响应,并对结果进行拉普拉斯变换以获得传递函数(更准确的当成离散时间的非线性系统)。
并将
I
P
/
(
2
π
)
I_P/(2π)
IP/(2π) 视为
P
F
D
/
C
P
级联
PFD/CP级联
PFD/CP级联 的传输函数
可以构建线性相位模型,获得开环传递函数
[
I
p
/
(
2
π
C
1
s
)
]
(
K
V
C
O
/
s
)
[I_p/(2πC_1 s)](K_VCO/s)
[Ip/(2πC1s)](KVCO/s) 。这种结构被称为“II型”PLL,因为开环传输函数中包含两个极点,最终得到闭环传输函数。
该传输函数中包含两个虚数极点,暗示着一个不稳定的环路。(注意这里
ζ
=
0
ζ=0
ζ=0 。)这种情况是由两个理想积分器引起的。
为了使该环路稳定,可以有两种方法:(a)使其中一个积分器“有损耗”,使其传递函数为
1
/
(
s
+
ω
1
)
1/(s+ω_1)
1/(s+ω1) 形式。(b)添加开环零点,使一个积分器的传递函数变为
α
+
β
/
s
=
(
α
s
+
β
)
/
s
α+β/s=(αs+β)/s
α+β/s=(αs+β)/s 。我们在这里采用后者,将
R
e
s
Res
Res 与
C
a
p
Cap
Cap 串联(图5.5),现在,当电荷泵接通或断开时,控制电压会跳变
I
P
R
1
I_P R_1
IPR1 ,在没有零点的情况下,该现象不存在。
如前所示,
P
F
D
/
C
P
PFD/CP
PFD/CP 级联的传递函数为
I
P
/
(
2
π
)
I_P/(2π)
IP/(2π) ,得到
新的零点位于
−
1
/
(
R
1
C
1
)
-1/(R_1 C_1)
−1/(R1C1) 。使用这种结构,我们构建了图2.3所示的基本“电荷泵PLL”(CPPLL),并将
R
1
C
1
R_1 C_1
R1C1分支称为“环路滤波器”。
由于
C
P
CP
CP 和
C
1
C_1
C1 提供的积分器,静态相位误差仍然为零。闭环传递函数由下式给出
得到
CPPLL总结:
(2.4)中的闭环传递函数包含一个零点和两个极点,表现出低通响应。也就是说,缓慢的输入相位波动传播到输出,但快速的相位变化被过滤掉。此外,(2.6)表明
ζ
ζ
ζ 随着
C
1
C_1
C1 的增加而增加,与I型PLL相反。可以计算-3dB带宽并绘制系统的频率响应。图2.3的结构解决了I型PLL确定的所有三个缺点。
在方程(2.5)和(2.6)中,I_P和K_VCO仅作为一个乘积出现,这表明如果它们朝相反的方向变化,响应保持不变。然而,如果
K
V
C
O
K_{VCO}
KVCO 较高或
I
P
I_P
IP 较低,则会出现许多问题。对于
ω
0
ω_0
ω0 的VCO频率,我们将
K
V
C
O
K_{VCO}
KVCO 限制为小于
ω
0
/
10
ω_0/10
ω0/10。
2.3.2级联分频器
结构如图2.4所示
如果考虑分频器,开环传输函数为
因此,必须增加
R
1
R_1
R1 、
I
p
I_p
Ip 或
C
1
C_1
C1,以补偿
M
M
M 对
ζ
ζ
ζ 的影响。
在实际的系统中,如果将
M
M
M 设为可变的,一般电荷泵的电流也应该可变,配合使得阻尼因子相对稳定,保证环路稳定。
3高阶环路
不只是三阶,还能更高阶。
3.1引入C2减小纹波(三阶)
将电容器直接从控制线连接到地上。如图3.1所示,使初始电荷泵电流流过
C
2
C_2
C2 ,从而降低
V
c
o
n
t
V_{cont}
Vcont 的跳变。
将
C
2
C_2
C2 添加到滤波器中将环路的阶数提高到3,从而降低相位裕度。尽管如此,大至
0.2
C
1
0.2C_1
0.2C1 的
C
2
C_2
C2 对环路稳定时间的影响可忽略不计。
对于该环路的相位裕度可以进行评估,由于环路滤波器阻抗现在由
C
e
q
=
C
1
C
2
/
(
C
1
+
C
2
)
C_{eq} =C_1 C_2/(C_1+C_2)
Ceq=C1C2/(C1+C2) 给出,因此开环传输函数为:
其中
C
e
q
=
C
1
C
2
/
(
C
1
+
C
2
)
C_{eq}=C_1 C_2/(C_1+C_2)
Ceq=C1C2/(C1+C2) 。通过,上式可以判断,该系统存在三个极点,其中
∣
ω
p
3
∣
=
(
R
1
C
e
q
)
−
1
|ω_{p3} |=(R_1 C_{eq} )^{-1}
∣ωp3∣=(R1Ceq)−1 ,第三极点频率大于零点频率,波特图如图 6.4 所示。
当
ω
p
3
=
ω
u
ω_{p3}=ω_u
ωp3=ωu 时,相位裕度约为45◦。
因此,通常将令
ω
p
3
>
ω
u
ω_{p3}>ω_u
ωp3>ωu ,以使相位裕度降低到可忽略的程度。在这种情况下,
ω
u
ω_u
ωu 本身也受到
ω
p
3
ω_{p3}
ωp3 的影响,可以忽略不计,
ζ
ζ
ζ 仍由(2.6)定义。计算得到
相位裕度退化的量等于
t
a
n
−
1
(
ω
u
/
ω
p
3
)
tan^{-1} (ω_u/ω_{p3})
tan−1(ωu/ωp3)。如果我们加上
C
2
≈
0.2
C
1
C_2≈0.2C_1
C2≈0.2C1 ,相位裕度会降低
t
a
n
−
1
(
2.2
/
6
)
◦
tan^{-1} (2.2/6)◦
tan−1(2.2/6)◦ ,这个值很小,可忽略不计。
3.2环路滤波器增加串联电阻(二阶)
另一种二阶滤波器拓扑如图3.3所示。在这种情况下,
R
1
R_1
R1 两端的电压被允许跳跃,但随后的
R
C
RC
RC 级衰减了纹波。图 3.1 和 3.3 中的滤波器为给定的
P
M
PM
PM 劣化提供了大致相同的波纹。
4 CPPLL设计与仿真
首先根据每个模块的功能对其进行 S i m u l i n k Simulink Simulink 模型搭建,然后在 S i m u l i n k Simulink Simulink 中进行系统参数优化,然后进行功能仿真。模型参数确定后,根据模型参数进行电路设计,最后再次仿真验证 P L L PLL PLL 功能,此次设计仅仅是为了初步了解,因此并没有针对电路的性能进行电路优化,都是常规的电路结构。
4.1 Simulink建模设计与仿真
S
i
m
u
l
i
n
k
Simulink
Simulink 的
T
O
P
TOP
TOP 模型如图4.1所示。首先通过系统模型计算最优参数,获得系统的幅频响应、阶跃响应和波特图,模型参数确定后,带入
C
P
P
L
L
CPPLL
CPPLL 的
S
i
m
u
l
i
n
k
Simulink
Simulink 模型中,分别对正弦波输出
S
i
n
_
O
u
t
Sin\_Out
Sin_Out 、控制信号
V
c
o
n
t
Vcont
Vcont 和分频信号
D
i
v
_
O
U
T
Div\_OUT
Div_OUT进行观察。
内部的模块由
P
F
D
PFD
PFD 、
C
P
CP
CP 、
V
C
O
VCO
VCO 和分频器构成,如图4.2所示。
4.1.1 使用matlab求解CPPLL系统参数
通过
m
a
t
l
a
b
matlab
matlab 建立
C
P
P
L
L
CPPLL
CPPLL 的数学模型,通过确定
K
P
D
K_{PD}
KPD 、
K
V
C
O
K_{VCO}
KVCO 和分频比
M
M
M 之后,进行系统参数求解,确定
C
P
P
L
L
CPPLL
CPPLL 的参数模型,然后获得其幅频响应、阶跃响应和波特图,分别如图4.2、图4.3和图4.4所示。
4.1.2使用simulink进行系统可行性仿真
根据
m
a
t
l
a
b
matlab
matlab 求解的系统参数,搭建
S
i
m
u
l
i
n
k
Simulink
Simulink 模型,然后进行可行性仿真。分别对分频器功能、控制电压
V
c
o
n
t
Vcont
Vcont 、
V
C
O
VCO
VCO 建立过程波形和最终
V
C
O
VCO
VCO 稳定输出的结果进行验证,如图4.5、图4.6、图4.6和图4.8所示。
4.2 实际电路设计与仿真
系统参数确定后,或者说确定系统可行后,进行电路设计,此次基于 T S M C 18 u m TSMC18um TSMC18um 工艺进行电路设计,电路设计过程不再赘述,因为并没有针对性的优化只是验证一下 s i m u l i n k simulink simulink 的模型。
4.2.1 CPPLL电路
电路采用了经典的CPPLL结构,其中 V C O VCO VCO 采用的是互补耦合对的 L C LC LC 振荡器、分频比128、电荷泵电流 I P = 50 u A I_P = 50uA IP=50uA 、电荷泵采用的基于运放的结构,可以参考:【模拟CMOS集成电路设计】电荷泵(Charge bump)设计与仿真(示例:栅极开关CP+轨到轨输入运放+基于运放CP)
4.2.2 CPPLL电路仿真
瞬态仿真
5
u
s
5us
5us ,观察
C
P
P
L
L
CPPLL
CPPLL 最终输出,波形如图4.10所示。
将最终稳定的
C
P
P
L
L
CPPLL
CPPLL 输出波形局部放大,如图4.11所示,为了方便观测输出频率,计算输出频率,结果如图 4.12 所示。
下面是电荷泵输出
V
c
o
n
t
V_{cont}
Vcont 的瞬态波形,为了对比,同时将
S
i
m
u
l
i
n
k
Simulink
Simulink 仿真的波形一并展示,如图4.13和图4.14所示。
通过
V
c
o
n
t
V_{cont}
Vcont 波形的对比可知,在
S
i
m
u
l
i
n
k
Simulink
Simulink 的仿真中也预测到了控制电压
V
c
o
n
t
V_{cont}
Vcont 的过冲,表现出了一致性。然后就是
P
F
D
PFD
PFD 的逻辑信号,如图4.14所示。
时间比较仓促,上述内容仅是个人学习过程的笔记,可能文章内存在一些疏漏,谅解~