行为地理学概述

一、中国行为地理学的学科定位

1、关注人地关系的核心问题

地理环境子系统与人类活动子系统的互动关系

人类活动的正面分析

2、面向社会化的发展趋势

人地关系中人、地含义的转变

对人的理解:自然人-经济人-社会人

对地的理解:自然地理环境-经济地理环境、社会地理环境以及生态环境

3、强调时空交互的分析视角

人地关系中形态向过程的转向

空间结构、时间结构、时空间结构

二、行为地理学的学科特色

微观个体:以个体为分析单元开展微观尺度的分析

行为过程:从过程上分析特定空间行为何以发生

主客观结合:考虑客观环境和主观因素对行为影响

时空间整合:不仅关注空间,还将时间加入分析框架

多学科交叉:注重将心理学、社会学、人类学等学科的理论与方法应用到空间行为研究。

三、行为地理学的研究前沿

理解行为:面向动态人地关系的行为地理学

理解个体:面向个体生活质量的行为地理学

理解社会:面向社会可持续发展的行为地理学

1、理解行为

行为环境的多维机制,强调主客观结合(调查)

强调空间认知,关注思想-大脑-身体-环境的复杂关系(认知距离)

2、理解个体

理解生活经历:行为的时间尺度

理解社会关系:行为的社会纬度

建成环境-行为-个人福祉

​ 面向主观幸福感、生活质量与公众健康

3、面向社会

丰富可持续发展的微观尺度,关注城市的人文性、智慧性与可持续性

四、中国城市社会专项与规划应对

1、问题

规划方法:缺乏人文关怀,轻视个人行为;量化规划较少,模拟预测不足

规划体系:侧重生产空间,轻视生活空间;偏重空间规划,轻视时间规划。

治理体系:侧重管理,轻视服务;刚性有余,动态不足;信息技术应用不够。

2、创新

规划方法:倡导基于大数据与居民行为的规划方法论;倡导基于科学预测与模拟的规划过程论。

规划体系:倡导城市生活空间规划,完善城市社区生活圈规划;倡导城市时间规划,完善城市居民时空行为规划与引导。

空间治理:倡导城市动态化只能化诊断评估与监控预警

几种创新的例子

基于行为地理学的社区规划创新

城市生活圈规划体系

基于居民GPS行为轨迹的社区生活圈划分

基于结晶生长与机器学习的社区生活圈划分

基于社区生活圈的公共设施服务配置标准优化

拓展生活圈

社区时间规划与管理

五、行为地理学面临的挑战

跨学科挑战—行为地理学边界的弹性:跨学科交叉研究中的定位;在学科之外寻找可能性;综合集成的步履艰难

研究方法挑战—行为地理学发展的动力:gps和its技术的机遇与挑战;理论驱动vs技术创新

方法论挑战—行为地理学内核心

定位;在学科之外寻找可能性;综合集成的步履艰难

研究方法挑战—行为地理学发展的动力:gps和its技术的机遇与挑战;理论驱动vs技术创新

方法论挑战—行为地理学内核心

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值