我国村庄规划发展


我国的村庄规划的历史很久,从古代到现代的乡村建设从来没有停止过前进的步伐。但是乡村规划真正作为一个系统的名词出现是在我国改革开放之后。改革开放之后的村庄规划更能体现我国之后的每个时代的阶段问题和和深深的政策烙印。

大致可以分为以下几个阶段:

1.1978年-1984年:探索阶段

这个时期的出现的大的背景是十一届三中全会,提出了家庭联产承包责任制,这一时期将农业农村得到重视提到日程上来,对此乡村规划的工作也在探索中前进。如在1981年第二次全国农村房屋建设工作会议中提出,乡村规划要将村庄与其周边环境进行综合考虑,这一举动奠定了我国的乡村规划阶段已经有了一定的理念想法,但是缺少相关的技术标准和一定的理论基础。

2.1984年-2002年:发展阶段

这个时期由于提出了市场经济的概念,为了适应市场的需求,因此农村的产业发展和经营体制也开始进行了创新,农村劳动力持续转移,进一步推动了农村的改革与发展。同时,村庄规划开始有了明确的立法文件,像1993年颁布的《村庄和集镇规划建设管理条例》、1994年《村镇规划标准》、1995年《建制镇规划建设管理办法》、1997年《村镇建设工作要点》、《小城镇环境规划编制导则》等。同时这一时期因为有了法规的设立,各个省市开始进行各自的村庄规划。

3.2002年-2012年:城乡一体化阶段

这个时期我国的经济有了一定的发展,与此同时我国的农村农业发展也进入了一个新的历史阶段。这一时期我国完善和健全了一系列的农村制度,推动了我国农村各项工作的发展,谋求城乡之间形成一体化的状态,掀起新农村建设的浪潮。2008年《城乡规划法》的出台,村庄规划正式得到了法律层面的认可,成为了法定的规划之一。

4.2012年-至今:美丽乡村和乡村振兴阶段

这个时期国家对于乡村的工作,提出了两个大的命题,一个是2013年中央一号文件提出来的“美丽乡村”,另一个是2017年提出来的“乡村振兴”的战略。美丽乡村规划推动了村庄规划的编制工作。2014年,农业部开展了中国最美休闲乡村和中国美丽田园推介会,进一步推动了美丽乡村的规划与建设。2015年,住房与城乡建设部出台《关于改革创新、全面有效推进乡村规划工作的指导意见》,提出要在五年内实现村庄规划的“全覆盖”。乡村振兴战略时期,推动了多规合一的实用性村庄规划的编制,村土地利用规划和村庄规划合并为新时代的村庄规划。

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值