DataStructure----解释二叉排序树

两组测试数据:两组测试数据

#include <stdio.h>
#include <stdlib.h>
#define ENDKEY 0

typedef int KeyType;
typedef struct  node
{
    KeyType  key ;                /*关键字的值*/
    struct node  *lchild,*rchild; /*二叉树的左右孩子指针*/
}BSTNode, *BSTree;

void InsertBST(BSTree *t, KeyType key)
/*若在二叉排序树中不存在关键字等于key的元素,插入该元素*/
{ 
    BSTree s;
    if (*t == NULL)               /*递归结束条件*/
    {
        s=(BSTree)malloc(sizeof(BSTNode));   /*申请新的结点s的堆空间*/
        s->key = key;
        s->lchild = NULL; 
        s->rchild = NULL;
        *t=s;
    }
    else 
        if (key < (*t)->key)
            InsertBST(&((*t)->lchild), key);/*若插入的key的值小于根节点,则将s插入左子树*/
        else 
            InsertBST(&((*t)->rchild), key); /*反之,将s插入右子树*/
}
/******生成二叉排序树******/
void  CreateBST(BSTree  *t)
{
	KeyType key;
    *t=NULL;
    scanf("%d", &key);
    while (key != ENDKEY)   /*出口条件,ENDKEY预定义为0*/
    {
        InsertBST(t, key);
        scanf("%d", &key);
    }
}
void  PreOrder(BSTree root) /*递归先序遍历二叉树, root为指向二叉树根结点的指针*/
{
    if (root != NULL)
    {
        printf("%d ", root->key);  /*输出结点*/
        PreOrder(root->lchild);  /*先序遍历左子树*/
        PreOrder(root->rchild);  /*先序遍历右子树*/
    }
}

BSTree  SearchBST(BSTree bst, KeyType key)
/*在根指针bst所指二叉排序树bst上,查找关键字等于key的结点,若查找成功,返回指向该元素结点指针,否则返回空指针*/
{ 
    BSTree q;
    q=bst;
    while(q)
    {
        if (q->key == key) 
            return q;               /*查找成功*/
        if (q->key > key)  
            q=q->lchild;            /*在左子树中查找*/
        else  
            q=q->rchild;            /*在右子树中查找*/
    }
    return NULL;                    /*查找失败*/
}
BSTNode  *DelBST(BSTree t, KeyType  k) /*在二叉排序树t中删去关键字为k的结点*/
{
    BSTNode  *p, *f,*s ,*q;
    p=t; 
    f=NULL;
    while(p)                         /*查找关键字为k的待删结点p*/
    { 
        if(p->key == k )  break;     /*找到则跳出循环*/
        f=p;                         /*f指向p结点的双亲结点*/
        if(p->key > k )  
            p=p->lchild;
        else 
            p=p->rchild;
    } 
    if(p==NULL)  return t;        
   

斜体样式第一种情况,当被删除的的结点p没有左子树时
此时p的位置分三种情:
First:p为根节点
Second:p不为根,即有双亲结点,且p为双亲结点f的左子树
Third:p不为根,即有双亲结点,且p为双亲结点f的右子树

 if(p->lchild==NULL)                /*p无左子树*/
    { 
        if(f==NULL) 
            t=p->rchild;               /*p是原二叉排序树的根*/
        else 
            if(f->lchild==p)           /*p是f的左孩子*/
                f->lchild=p->rchild ;  /*将p的右子树链到f的左链上*/
            else                       /*p是f的右孩子*/
                f->rchild=p->rchild ;  /*将p的右子树链到f的右链上*/
            free(p);                   /*释放被删除的结点p*/
    }
    else                               /*p有左子树,即 p->lchild != NULL*/
    { 
        q=p; 
        s=p->lchild;
        while(s->rchild)               /*在p的左子树中查找最右下结点*/
        {
            q=s; 
            s=s->rchild;
        }

在这里插入图片描述

 if(q==p) 
            q->lchild=s->lchild ;      /*将s的左子树链到q上*/
        else 
            q->rchild=s->lchild;
        p->key=s->key;                 /*将s的值赋给p*/
        free(s);
    }
    return t;
}
void main()
{
    BSTree T;
    int k;
    BSTree result;
	printf("----输入零即退出----\n");
    printf("建立二叉排序树,请输入序列:\n");
    CreateBST(&T);                    /*创建二叉树*/

    printf("先序遍历输出序列为:");
    PreOrder(T);

    printf("\n请输入要查找的元素:");
    scanf("%d",&k);
    result = SearchBST(T,k);
    if (result != NULL)
        printf("要查找的元素为:%d\n",result->key);
    else
        printf("未找到!\n");

    result = DelBST(T,k);            /*删除结点k*/
    
	printf("查找完毕后,先序遍历输出序列为:");
    PreOrder(result);
}

测试截图:vscode终端下运行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值