算法练习:保证图可完全遍历

题目:
Alice 和 Bob 共有一个无向图,其中包含 n 个节点和 3 种类型的边:

类型 1:只能由 Alice 遍历。
类型 2:只能由 Bob 遍历。
类型 3:Alice 和 Bob 都可以遍历。

给你一个数组 edges ,其中 edges[i] = [typei, ui, vi] 表示节点 ui 和 vi 之间存在类型为 typei 的双向边。请你在保证图仍能够被 Alice和 Bob 完全遍历的前提下,找出可以删除的最大边数。如果从任何节点开始,Alice 和 Bob 都可以到达所有其他节点,则认为图是可以完全遍历的。

返回可以删除的最大边数,如果 Alice 和 Bob 无法完全遍历图,则返回 -1 。

示例 1:

在这里插入图片描述

输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]]
输出:2
解释:如果删除 [1,1,2] 和 [1,1,3] 这两条边,Alice 和 Bob 仍然可以完全遍历这个图。再删除任何其他的边都无法保证图可以完全遍历。所以可以删除的最大边数是 2 。

示例 2:

在这里插入图片描述

输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,4],[2,1,4]]
输出:0
解释:注意,删除任何一条边都会使 Alice 和 Bob 无法完全遍历这个图。

示例 3:

在这里插入图片描述

输入:n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]]
输出:-1
解释:在当前图中,Alice 无法从其他节点到达节点 4 。类似地,Bob 也不能达到节点 1 。因此,图无法完全遍历。

提示:

1 <= n <= 10^5
1 <= edges.length <= min(10^5, 3 * n * (n-1) / 2)
edges[i].length == 3
1 <= edges[i][0] <= 3
1 <= edges[i][1] < edges[i][2] <= n
所有元组 (typei, ui, vi) 互不相同

来源:力扣(LeetCode)

解题思路:

能遍历所有结点且连接的边数最小,这样构成的图一定是个连通图。

要实现题目要求,我们可以将所有边分成公共边,Alice独占边和Bob独占边三类来看。为了达到AB能遍历所有的点这一条件,当删除一条公共边时,我们必须保留一条A独占边和一条B独占边,这样得到的就不是最大的删除边数了,所以我们要尽量保留公共边,如何尽量保留公共边?先并查公共边即可。
创建一个类用于写并查集的方法,两个图,一个代表A的连通图,一个代表B的连通图。
刚开始AB的连通图内并不连通而是分散的结点,各结点之间没有边连接,每一个结点都是一个连通分量,它们所在的连通分量的父节点都是这个结点自己。当开始进行判断时,先查找到这条边所连接的两个结点所在的连通分量的父节点,如果他们的父节点相同,则这两个结点在同一个连通分量,代表这两个结点是连通的,就可以删除这条边,如果不在同一连通分量,则不删除这条边,通过这条边连接这两个连通分量,从而使这两个点连接。

代码实现:

注意:由于是第一次做并查集的题,确实挺难,我直接照抄的官方答案,但是在每一行代码上我都加上了自己的详细注解。

class Solution {
    public int maxNumEdgesToRemove(int n, int[][] edges) {
        UnionFind ufa = new UnionFind(n);//代表Alice的连通图
        UnionFind ufb = new UnionFind(n);//代表Bob的连通图
        
        //删除边的数
        int ans = 0;

        // 节点编号改为从 0 开始
        for (int[] edge : edges) {
            --edge[1];
            --edge[2];
        }

        // 判断公共边中
        for (int[] edge : edges) {
            if (edge[0] == 3) {
                if (!ufa.unite(edge[1], edge[2])) {//如果这条边能删除,则删除,
                    ++ans;
                } else {
                	/*
                	 * 否则如果不能,则在Bob的连通图中添加这条边,
                	 * 因为在上边判断这条边不能删除的同时已经在Alice的连通图中添加了这条边,而且这是一条公共边
                	 * 所以这里只用在Bob的连通图中判断是否要添加,并在要添加时添加
                	 */
                    ufb.unite(edge[1], edge[2]);
                }
            }
        }

        // 独占边
        for (int[] edge : edges) {
            if (edge[0] == 1) {
                // Alice 独占边
                if (!ufa.unite(edge[1], edge[2])) {
                    ++ans;
                }
            } else if (edge[0] == 2) {
                // Bob 独占边
                if (!ufb.unite(edge[1], edge[2])) {
                    ++ans;
                }
            }
        }

        //如果最终代表Alice的图或者Bob的图的连通分量不为1,则不是连通图则不满足题意,返回-1
        if (ufa.setCount != 1 || ufb.setCount != 1) {
            return -1;
        }
        return ans;
    }
}

// 并查集模板
class UnionFind {
    int[] parent;
    int[] size;
    int n;
    // 当前连通分量数目
    int setCount;

    public UnionFind(int n) {
        this.n = n;
        this.setCount = n;
        //节点数组,数组中的元素代表当前节点与哪一个节点连接
        this.parent = new int[n];//01234...n-1
        this.size = new int[n];//11111
        //把数组的每一个元素都填充为1
        Arrays.fill(size, 1);
        for (int i = 0; i < n; i++) {
            parent[i] = i;
        }
    }
    
    public int findset(int x) {//找到当前节点x最终指向的节点,也就是当前节点所在联通分量的父节点
        return parent[x] == x ? x : (parent[x] = findset(parent[x]));
    }
    
    //判断是否删除边并结合边
    public boolean unite(int x, int y) {//edges[1],edges[2]代表相连接的两个节点
        //x,y都为两个结点所在连通分量的父结点
    	x = findset(x);
        y = findset(y);
        //如果这两个结点的父结点相同,则代表两个结点在同一连通分量,则此边多余,删除
        if (x == y) {
            return false;//删除此边
        }
        /*
         * 如果x所在连通分量的结点个数小于x所在连通分量的结点个数,则交换x,y的值,
         * 这样再进行之后的操作时就是让x指向y结点
         * (为了保持让结点个数少的去连接多的,但是为什么要这样我不清楚,可能是为了节省时间空间)
         */
        if (size[x] < size[y]) {
            int temp = x;
            x = y;
            y = temp;
        }
        parent[y] = x;//y节点和x节点连接(y节点指向x节点)
        size[x] += size[y];//x为当前联通分量的父节点,x的size值代表当前联通分量内的节点数
        --setCount;//联通分量减一
        return true;//在连通图中添加了边,不删除
    }
    
    //判断两个点是否连通,即判断两个点所在的连通分量是否是同一个
    public boolean connected(int x, int y) {
        x = findset(x);
        y = findset(y);
        return x == y;
    }
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页