题目
给你一个整数数组 nums
,和两个整数 limit
与 goal
。数组 nums
有一条重要属性:abs(nums[i]) <= limit
。
返回使数组元素总和等于 goal
所需要向数组中添加的 最少元素数量 ,添加元素 不应改变 数组中 abs(nums[i]) <= limit
这一属性。
注意,如果 x >= 0
,那么 abs(x)
等于 x
;否则,等于 -x
。
示例 1:
输入:nums = [1,-1,1], limit = 3, goal = -4 输出:2 解释:可以将 -2 和 -3 添加到数组中,数组的元素总和变为 1 - 1 + 1 - 2 - 3 = -4 。
示例 2:
输入:nums = [1,-10,9,1], limit = 100, goal = 0 输出:1
提示:
1 <= nums.length <= 105
1 <= limit <= 106
-limit <= nums[i] <= limit
-109 <= goal <= 109
思路
其实这题的思路可以转变成 sum = sum(nums),使得sum最少加多少个 -limit <= x <= limit 等于goal。
暴力
暴力的情况下我们是这样算
class Solution {
public int minElements(int[] nums, int limit, int goal) {
long sum = 0;
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
}
int ct = 0;
if (goal > sum) {
while (sum < goal) {
ct++;
sum += limit;
}
} else if (goal < sum) {
limit = -limit;
while (sum > goal) {
sum += limit;
ct++;
}
}
return ct;
}
}
二分
一个一个加不如用二分法来加。
class Solution {
public int minElements(int[] nums, int limit, int goal) {
long sum = 0;
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
}
int ct = 0;
if (goal > sum) {
long l = 1, r = (long)1e9, mid = 0;
while (l < r) {
mid = l + r >> 1;
if (mid * limit + sum >= goal) {
r = mid;
} else {
l = mid + 1;
}
}
ct = (int) l;
} else if (goal < sum) {
limit = -limit;
long l = 1, r = (long)1e9, mid = 0;
while (l < r) {
mid = l + r >> 1;
if (mid * limit + sum <= goal) {
r = mid;
} else {
l = mid + 1;
}
}
ct = (int) l;
}
return ct;
}
}