学习
lishu_hyw
这个作者很懒,什么都没留下…
展开
-
lucas定理
lucas原创 2020-08-11 15:51:05 · 106 阅读 · 0 评论 -
组合数常用公式即证明
常用公式1.Cnm=Cn−1m−1+Cn−1mC_{n}^{m}=C_{n-1}^{m-1}+C_{n-1}^{m}Cnm=Cn−1m−1+Cn−1m2.mCnm=nCn−1m−1mC_{n}^{m}=nC_{n-1}^{m-1}mCnm=nCn−1m−13.Cn0+Cn1+Cn2+⋯+Cnn=2nC_{n}^{0}+C_{n}^{1}+C_{n}^{2}+\cdots+C_{n}^{n}=2^nCn0+Cn1+Cn2+⋯+Cnn=2n4.Cn1+2∗Cn2+⋯+n∗Cnn=n2n原创 2020-08-09 19:51:13 · 4168 阅读 · 0 评论 -
莫比乌斯函数-学习
内容μ(n)={1 若n=10 若n有大于1的平方数因数(−1)n &n原创 2020-07-30 16:28:40 · 144 阅读 · 0 评论 -
欧拉定理学习
欧拉定理对于个正整数a,na,na,n,若a,na,na,n互质,则有aφ(n)≡1(mod n)a^{\varphi(n)}\equiv1(mod\ n)aφ(n)≡1(mod n)证明先证明两个小性质设小于等于n且与nnn互质的φ(n)\varphi(n)φ(n)数分别是p1,p2,⋯ ,pφ(n)p_1,p_2,\cdots,p_{\varphi(n)}p1,p2,⋯,pφ(n),集合A为{ap1,ap2,⋯ ,apφ(n)}\{ap_{1},ap_{2},\cdot原创 2020-07-26 10:29:24 · 282 阅读 · 0 评论 -
拓展欧几里得详解(证明)
前置知识(贝祖定理)基本内容若a、ba、ba、b是整数,且gcd(a,b)=dgcd(a,b)=dgcd(a,b)=d,对于∀x,y\forall x,y∀x,y,都有ax+by=kdax+by=kdax+by=kd,且必∃m,n\exists m,n∃m,n有am+bn=1am+bn=1am+bn=1.证明若a、ba、ba、b是整数,且gcd(a,b)=dgcd(a,b)=dgcd(a,b)=d,则有a=k1d,b=k2da=k_1d,b=k_2da=k1d,b=k2d即对∀x,y\fora原创 2020-07-24 11:13:36 · 387 阅读 · 0 评论 -
费马小定理(介绍及证明)
大概内容如果ppp是一个质数,而整数aaa不是ppp的倍数,则有ap−1≡1(mod p)a^{p-1}\equiv 1(mod\ p)ap−1≡1(mod p)证明(利用反证法)如果ppp是一个质数,那么必有对于∀x<p,xa(mod p)∈{1,2,3,⋯ ,p−1}\forall x< p,xa(mod\ p)\in\{1,2,3,\cdots,p-1\}∀x<p,xa(mod p)∈{1,2,3,⋯,p−1}且对于∀x1、x2∈p(x1原创 2020-07-23 13:55:21 · 864 阅读 · 1 评论