费马小定理(介绍及证明)

大概内容

如果 p p p是一个质数,而整数 a a a不是 p p p的倍数,则有 a p − 1 ≡ 1 ( m o d   p ) a^{p-1}\equiv 1(mod\ p) ap11(mod p

证明(利用反证法)

如果 p p p是一个质数,那么必有对于 ∀ x < p , x a ( m o d   p ) ∈ { 1 , 2 , 3 , ⋯   , p − 1 } \forall x< p,xa(mod\ p)\in\{1,2,3,\cdots,p-1\} x<p,xa(mod p){1,2,3,,p1}且对于 ∀ x 1 、 x 2 ∈ p ( x 1 ≠ x 2 ) \forall x_1、x_2\in p(x_1\not=x_2) x1x2p(x1=x2),有 x 1 a ( m o d   p ) ≠ x 2 a ( m o d   p ) x_1a(mod\ p)\not=x_2a(mod\ p) x1a(mod p)=x2a(mod p)

反证:若结论不成立,则有:
x 1 a ( m o d   p ) = x 2 a ( m o d   p ) x_1a(mod\ p)=x_2a(mod\ p) x1a(mod p)=x2a(mod p)
显然可以推出:
( x 1 − x 2 ) a ( m o d   p = 0 ) (x_1-x_2)a(mod\ p=0) (x1x2)a(mod p=0)
显然 ( x 1 − x 2 ) (x_1-x_2) (x1x2) a a a都与p互质,所以不可能含有 p p p的因数,因此 x 1 a ( m o d   p ) ≠ x 2 a ( m o d   p ) x_1a(mod\ p)\not=x_2a(mod\ p) x1a(mod p)=x2a(mod p)
因此公式
( ∏ i = 1 p − 1 i × a ) ( m o d   p ) = a p − 1 ( p − 1 ) ! ( m o d   p ) = ∏ i = 1 p − 1 [ i × a ( m o d   p ) ] = ( p − 1 ) ! ( m o d   p ) (\prod \limits_{i=1}^{p-1}i\times a)(mod\ p)=a^{p-1}(p-1)!(mod\ p)=\prod \limits_{i=1}^{p-1}[i\times a(mod\ p)]=(p-1)!(mod\ p) (i=1p1i×a)(mod p)=ap1(p1)!(mod p)=i=1p1[i×a(mod p)]=(p1)!(mod p)
成立,得证。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值