组合数常用公式即证明

常用公式

1. C n m = C n − 1 m − 1 + C n − 1 m C_{n}^{m}=C_{n-1}^{m-1}+C_{n-1}^{m} Cnm=Cn1m1+Cn1m
2. m C n m = n C n − 1 m − 1 mC_{n}^{m}=nC_{n-1}^{m-1} mCnm=nCn1m1
3. C n 0 + C n 1 + C n 2 + ⋯ + C n n = 2 n C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+\cdots+C_{n}^{n}=2^n Cn0+Cn1+Cn2++Cnn=2n
4. C n 1 + 2 ∗ C n 2 + ⋯ + n ∗ C n n = n 2 n − 1 C_{n}^{1}+2*C_{n}^{2}+\cdots+n*C_{n}^{n}=n2^{n-1} Cn1+2Cn2++nCnn=n2n1

证明:
利用 m C n m = n C n − 1 m − 1 mC_{n}^{m}=nC_{n-1}^{m-1} mCnm=nCn1m1
     C n 1 + 2 ∗ C n 2 + ⋯ + n ∗ C n n \ \ \ \ C_{n}^{1}+2*C_{n}^{2}+\cdots+n*C_{n}^{n}     Cn1+2Cn2++nCnn
= n C n − 1 0 + n ∗ C n − 1 1 + ⋯ + n ∗ C n − 1 n − 1 = n 2 n − 1 =nC_{n-1}^{0}+n*C_{n-1}^{1}+\cdots+n*C_{n-1}^{n-1}=n2^{n-1} =nCn10+nCn11++nCn1n1=n2n1
** 5.** C n 1 + 2 2 ∗ C n 2 + ⋯ + n 2 ∗ C n n = n ( n + 1 ) 2 n − 2 C_{n}^{1}+2^2*C_{n}^{2}+\cdots+n^2*C_{n}^{n}=n(n+1)2^{n-2} Cn1+22Cn2++n2Cnn=n(n+1)2n2
证明略(同4)
6. C n 1 1 − C n 2 2 + ⋯ + ( − 1 ) n − 1 C n n n = 1 1 + 1 2 + ⋯ + 1 n \frac{C_{n}^{1}}{1}-\frac{C_{n}^{2}}{2}+\cdots+(-1)^{n-1}\frac{C_{n}^{n}}{n}=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n} 1Cn12Cn2++(1)n1nCnn=11+21++n1
证明:
利用公式1
S ( n ) = ∑ i = 1 n ( − 1 ) i − 1 C n i i = ∑ i = 1 n ( − 1 ) i − 1 [ C n − 1 i + C n − 1 i − 1 ] i = ∑ i = 1 n ( − 1 ) i − 1 C n − 1 i i + ∑ i = 1 n ( − 1 ) i − 1 C n − 1 i − 1 i = ∑ i = 1 n ( − 1 ) i − 1 C n − 1 i i + 1 n ∑ i = 1 n ( − 1 ) i − 1 C n i S(n)=\sum\limits_{i=1}^n\frac{(-1)^{i-1}C_n^i}{i}=\sum\limits_{i=1}^n\frac{(-1)^{i-1}[C_{n-1}^i+C_{n-1}^{i-1}]}{i}=\sum\limits_{i=1}^n\frac{(-1)^{i-1}C_{n-1}^i}{i}+\sum\limits_{i=1}^n\frac{(-1)^{i-1}C_{n-1}^{i-1}}{i}=\sum\limits_{i=1}^n\frac{(-1)^{i-1}C_{n-1}^i}{i}+\frac{1}{n}\sum\limits_{i=1}^n(-1)^{i-1}C_{n}^{i} S(n)=i=1ni(1)i1Cni=i=1ni(1)i1[Cn1i+Cn1i1]=i=1ni(1)i1Cn1i+i=1ni(1)i1Cn1i1=i=1ni(1)i1Cn1i+n1i=1n(1)i1Cni
S ( n ) = ∑ i = 1 n − 1 ( − 1 ) i − 1 C n − 1 i i + ( − 1 ) n − 1 C n − 1 n n + 1 n S(n)=\sum\limits_{i=1}^{n-1}\frac{(-1)^{i-1}C_{n-1}^i}{i}+\frac{(-1)^{n-1}C_{n-1}^n}{n}+\frac{1}{n} S(n)=i=1n1i(1)i1Cn1i+n(1)n1Cn1n+n1
∵ C n − 1 n = 0 \because C_{n-1}^n=0 Cn1n=0
∴ S ( n ) = ∑ i = 1 n − 1 ( − 1 ) i − 1 C n − 1 i i + 1 n \therefore S(n)=\sum\limits_{i=1}^{n-1}\frac{(-1)^{i-1}C_{n-1}^i}{i}+\frac{1}{n} S(n)=i=1n1i(1)i1Cn1i+n1
得 到 递 推 公 式 : S ( n ) = S ( n − 1 ) + 1 n 得到递推公式: S(n)=S(n-1)+\frac{1}{n} S(n)=S(n1)+n1
S ( 1 ) = 1 S(1)=1 S(1)=1
∴ S ( n ) = ∑ i = 1 n 1 i \therefore S(n)=\sum\limits_{i=1}^n\frac{1}{i} S(n)=i=1ni1
7. ( C n 0 ) 2 + ( C n 1 ) 2 + ⋯ + ( C n n ) 2 = C 2 n n (C_n^0)^2+(C_n^1)^2+\cdots+(C_n^n)^2=C_{2n}^n (Cn0)2+(Cn1)2++(Cnn)2=C2nn
证明:
( 1 + t ) 2 n = ( 1 + t ) n ( 1 + t ) n (1+t)^{2n}=(1+t)^n(1+t)^n (1+t)2n=(1+t)n(1+t)n
( 1 + t ) n = C n 0 t 0 + C n 1 t 1 + C n 2 t 2 + ⋯ + C n n t n (1+t)^n=C_n^0t^0+C_n^1t^1+C_n^2t^2+\cdots+C_n^nt^n (1+t)n=Cn0t0+Cn1t1+Cn2t2++Cnntn
C n k t k ∗ C n n − k t n − k = ( C n k ) 2 ∗ t n C_n^kt^k*C_n^{n-k}t^{n-k}=(C_n^k)^2*t^n CnktkCnnktnk=(Cnk)2tn
把所有t为n次的系数相加
( C n 0 ) 2 + ( C n 1 ) 2 + ⋯ + ( C n n ) 2 = C 2 n n (C_n^0)^2+(C_n^1)^2+\cdots+(C_n^n)^2=C_{2n}^n (Cn0)2+(Cn1)2++(Cnn)2=C2nn

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值