动态规划-公共子序列

noi1808.公共子序列

总时间限制: 1000ms 内存限制: 65536kB
描述
我们称序列Z = < z1, z2, …, zk >是序列X = < x1, x2, …, xm >的子序列当且仅当存在 严格上升 的序列< i1, i2, …, ik >,使得对j = 1, 2, … ,k, 有xij = zj。比如Z = < a, b, f, c > 是X = < a, b, c, f, b, c >的子序列。

现在给出两个序列X和Y,你的任务是找到X和Y的最大公共子序列,也就是说要找到一个最长的序列Z,使得Z既是X的子序列也是Y的子序列。
输入
输入包括多组测试数据。每组数据包括一行,给出两个长度不超过200的字符串,表示两个序列。两个字符串之间由若干个空格隔开。
输出
对每组输入数据,输出一行,给出两个序列的最大公共子序列的长度。
样例输入
abcfbc abfcab
programming contest
abcd mnp
样例输出
4
2
0

注意事项
1.注意下标
2.注意不要有多余的代码,比如

	cout << "Hello world!" << endl;

3.注意状态转移方程
代码

#include <iostream>
#include<bits/stdc++.h>
using namespace std;
char x[220],y[220];
void DP()
{
    int xlen=strlen(x+1),ylen=strlen(y+1);
    //cout<<xlen<<ylen<<endl;
    int dp[xlen+1][ylen+1];
    for(int i=0;i<xlen+1;i++)
        dp[i][0]=0;
    for(int i=0;i<ylen+1;i++)
        dp[0][i]=0;
    for(int i=1;i<xlen+1;i++)
    {
        for(int j=1;j<=ylen;j++)
        {
            if(x[i]==y[j])
                dp[i][j]=dp[i-1][j-1]+1;
            else
                dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
        }
    }
    cout<<dp[xlen][ylen]<<endl;
}
void input()
{
    while(cin>>(x+1)>>(y+1))
    {
        if(x[1]=='\n')
            return;
        DP();
    }
}
int main()
{
    input();
    //cout << "Hello world!" << endl;
    return 0;
}
/**
我们称序列Z = < z1, z2, ..., zk >是序列X = < x1, x2, ..., xm >的子序列
当且仅当存在 严格上升 的序列< i1, i2, ..., ik >,使得对j = 1, 2, ... ,k,
 有xij = zj。比如Z = < a, b, f, c > 是X = < a, b, c, f, b, c >的子序列。

现在给出两个序列X和Y,你的任务是找到X和Y的最大公共子序列,也就是说要
找到一个最长的序列Z,使得Z既是X的子序列也是Y的子序列。
输入
输入包括多组测试数据。每组数据包括一行,给出两个长度不超过200的字符串,
表示两个序列。两个字符串之间由若干个空格隔开。
输出
对每组输入数据,输出一行,给出两个序列的最大公共子序列的长度。
样例输入
abcfbc         abfcab
programming    contest
abcd           mnp
样例输出
4
2
0
*/

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共序列中,而B中的最后一个元素在最长公共序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共序列中,而A中的最后一个元素在最长公共序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共序列的长度。要找到具体的最长公共序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共序列。 LCS问题是动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值