交叉验证_分类

from sklearn.model_selection import cross_val_score  # K折交叉验证模块
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split  # 分割数据模块
from sklearn.neighbors import KNeighborsClassifier  # K最近邻(kNN,k-NearestNeighbor)分类算法
import matplotlib.pyplot as plt

# 加载iris数据集
iris = load_iris()
x = iris.data
y = iris.target

# #分割数据集
# x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=4)
# 建立模型
knn = KNeighborsClassifier()
# 使用K折交叉验证,准确率(accuracy)用于判断分类(Classification)模型的好坏
# score = cross_val_score(knn, x, y, cv=5, scoring="accuracy")
# 将5次的预测准确率打印出
# print(score)
# 将5次的预测准确平均率打印出
# print(score.mean())

# 建立测试模型参数
k_range = range(1, 31)
k_score = []
# 由迭代的方式来计算不同参数对模型的影响,并返回交叉验证后的平均准确率
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    score = cross_val_score(knn, x, y, cv=10, scoring="accuracy")
    k_score.append(score.mean())

# 可视化数据
plt.plot(k_range, k_score)
plt.xlabel("Value of K for KNN")
plt.ylabel("Cross-Validated Accuracy")
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦码城

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值