Analysis
一个图是二分图的充要条件是不含奇环
先按照套路将每条边的影响在线段树上拆做log个区间
然后考虑如何快速判断当前状态是否为一个二分图
当加边的时候,若(u,v)不连通:一定不会构成奇环,将它加入。
若(u,v)已经联通,则不加入这条边,而是查询u和v两点间的距离。若为偶数则加上这条边后会形成奇环。一个奇环不可能分成数个偶环,所以从此以后都不再是二分图。若为奇数则直接忽略这条边,因为如果将来某条边会与这条边形成奇环,则用当前u到v之间的路径(长度为奇数)替代这条边(长度为1)同样也会形成奇环。
按照上述做法,最终我们会造出原图的一棵生成树。
具体实现:
用带权并查集维护连通性和两点间距离的奇偶性。记录每个结点到它并查集上的父亲的距离(注意并查集的形态不一定和原树相同。加入边(u,v)时在并查集上连接的是它们所在集合的根f(u)和f(v))。
当加入边(u,v)时,设u和v所在并查集的根为x和y,要把x合并进y,x的父亲被赋值成y。脑补一下此时x到y的路径是x到u,边(u,v),然后v到y,所以暴力爬链分别求出u和v到根的距离,异或起来再异或1就是x到它的父亲y的距离。(因为异或的性质,如果用1表示奇数,0表示偶数。则1 xor 1 =0,0 xor 0 =0,1 xor 0 =1)
查询时把两点到根距离异或起来就是它们之间距离的奇偶性。(异或很常见的用法)
如果边会消失呢?删除一条已经被加入的边时,由于保证不存在出现时间交叉的情况,删除的一定是最晚加入的边。因此把对并查集的每次修改都存到一个栈中,撤销的时候按修改顺序的逆序复原即可。这种神奇的数据结构叫“可撤销并查集”
为了保证O(logn)的时间复杂度,需要按秩合并。同时由于要可撤销,不能路径压缩破坏树形。放上可撤销并查集的代码。
Code
#include<bits/stdc++.h>
#define in read()
#define re register
using namespace std;
inline int read(){
char ch;int f=1,res=0;
while((ch=getchar())<'0'||ch>'9') if(ch=='-') f=-1;
while(ch>='0'&&ch<='9'){
res=(res<<1)+(res<<3)+(ch^48);
ch=getchar();
}
return f==1?res:-res;
}
const int N=1e5+10,M=2e5+10;
int n,m,T;
struct query{int x,y;}q[M];
struct seg{
vector<query> v;
}tree[N<<2];
#define lc (k<<1)
#define rc (k<<1|1)
inline void modify(int k,int l,int r,int x,int y,int id){
if(x<=l&&r<=y) {
tree[k].v.push_back(q[id]);
return ;
}
int mid=l+r>>1;
if(x<=mid) modify(lc,l,mid,x,y,id);
if(y>mid) modify(rc,mid+1,r,x,y,id);
}
int top=0,fa[N],sze[N],d[N];
struct node{
int x,siz,dis;
node(int x=0,int siz=0,int dis=0):x(x),siz(siz),dis(dis){}
}stk[M];
bool ans[N];
inline int getfa(int x){
return x==fa[x]?x:getfa(fa[x]);
}
inline int dis(int x){
return x==fa[x]?d[x]:d[x]^dis(fa[x]);
}
inline void merge(int u,int v){
int x=getfa(u),y=getfa(v);
if(sze[x]<sze[y]) swap(x,y);
stk[++top]=(node){y,sze[y],d[y]};
stk[++top]=(node){x,sze[x],d[x]};
d[y]=dis(u)^dis(v)^1;
fa[y]=x;sze[x]+=sze[y];
}
inline void delet(int cur){
while(top>cur){
fa[stk[top].x]=stk[top].x;
sze[stk[top].x]=stk[top].siz;
d[stk[top].x]=stk[top].dis;
top--;
}
}
void solve(int k,int l,int r){
int cur=top;bool flag=0;
for(re int i=tree[k].v.size()-1;i>=0;--i) {
int x=tree[k].v[i].x,y=tree[k].v[i].y;
int fx=getfa(x),fy=getfa(y);
if(fx==fy&&!(dis(x)^dis(y))){
flag=1;
break;
}
else if(fx!=fy) merge(x,y);
}
if(!flag){
if(l==r) ans[l]=1;
else {
int mid=l+r>>1;
solve(lc,l,mid);solve(rc,mid+1,r);
}
}
delet(cur);
}
int main(){
n=in;m=in;T=in;
for(re int i=1;i<=n;++i) fa[i]=i,sze[i]=1;
for(re int i=1;i<=m;++i){
int u=in,v=in,sta=in,end=in;
sta++;if(sta>end) continue;
q[i].x=u,q[i].y=v;
modify(1,1,T,sta,end,i);
}
solve(1,1,T);
for(re int i=1;i<=T;++i){
if(ans[i]) puts("Yes");
else puts("No");
}
return 0;
}