Hard negtive node(硬负样本节点)与 Easy negative nodes(简单样本节点)

文章探讨了在机器学习中,硬负样本(与正样本相似度高、区分困难)与易负样本(易于区分)的区别。它们在嵌入空间中的区分利用了对比学习方法来提高模型训练效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hard negtive node(硬负样本节点):顾名思义,是比较硬的,难区分的。"硬负样本"通常指的是那些与positive node正样本节点相似度非常高,难以在潜在空间中与正样本区分开来的负样本。这些节点通常对于训练机器学习模型来说是挑战性的,因为模型需要学会正确地将它们分类为负样本。

Easy negative nodes(简答样本节点):和上面一比较,意思是很容易与正样本节点区分开的。

上面的区分开,我觉得都是指节点都变为嵌入向量后再来进行区分,因为在嵌入空间的区分感觉更方便和直观。
使用对比学习contrastive learning可能有效开采Hard negtive node。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

重剑DS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值