经典计量经济学基本假设—课堂理解笔记(一)
经典计量经济学(CLM),也称经典线性模型。在经典线性回归模型中,高斯—马尔可夫假定对于最小二乘估计(OLS)效果以及假设检验的成立及其重要。基本的假定总结起来主要有五个。首先基本线性模型形式如下
Y = β 0 + β 1 X + β 2 X + . . . . . + β n X + ϵ \ Y = \beta_0+\beta_1X+\beta_2X+\ .....+\beta_nX+\epsilon Y=β0+β1X+β2X+ .....+βnX+ϵ
1.线性
看到该假设,我们常规的想法是Y与X的存在线性关系,这没有问题,但是在高斯马尔可夫经典假设中的表达为"linear in parameters",因此更为精确的含义是:被解释变量Y与参数 β i \beta_i βi之间的线性关系。那么如何理解呢?
其实在参数估计结果中我们可以发现参数与Y是线性关系
β ^ = ( X ′ X ) − 1 X ′ Y \hat{\beta}=(X'X)^{-1}X'Y β^=(X