经典线性回归假设—课堂理解笔记

本文探讨了经典线性回归中的高斯马尔可夫假设,强调了被解释变量Y与参数之间的线性关系,解释了满秩假设在处理多重共线性问题中的重要性,同时阐述了误差项与自变量的独立性、零均值以及同方差和无自相关性对模型的影响。最后指出在大样本情况下,正态分布假设可以适当放宽。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经典计量经济学基本假设—课堂理解笔记(一)


  经典计量经济学(CLM),也称经典线性模型。在经典线性回归模型中,高斯—马尔可夫假定对于最小二乘估计(OLS)效果以及假设检验的成立及其重要。基本的假定总结起来主要有五个。首先基本线性模型形式如下
  Y = β 0 + β 1 X + β 2 X +   . . . . . + β n X + ϵ \ Y = \beta_0+\beta_1X+\beta_2X+\ .....+\beta_nX+\epsilon  Y=β0+β1X+β2X+ .....+βnX+ϵ
1.线性

  看到该假设,我们常规的想法是Y与X的存在线性关系,这没有问题,但是在高斯马尔可夫经典假设中的表达为"linear in parameters",因此更为精确的含义是:被解释变量Y与参数 β i \beta_i βi之间的线性关系。那么如何理解呢?

  其实在参数估计结果中我们可以发现参数与Y是线性关系
β ^ = ( X ′ X ) − 1 X ′ Y \hat{\beta}=(X'X)^{-1}X'Y β^=X

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值