项目场景:
对2019年steam中热度最高的100款游戏进行分析并可视化展示,项目基于jupyter notebook实现。
项目简介
代码使用Pandas库读取"data.csv"数据文件,文件包含游戏相关信息,如平均在线人数、类型、游戏名称、发布时间和评分等。然后,对数据进行整理和处理,包括删除不需要的列、对评分进行分级、处理发布时间格式、清理平均在线人数中的逗号等。接下来,为绘制气泡图,代码定义了一些颜色和尺寸相关的函数,以及对应不同游戏类型的颜色和点大小,并将这些信息插入到数据中。最后,通过Matplotlib库绘制游戏热度的气泡图,横坐标为发布时间,纵坐标为评级,每个点的颜色和大小表示游戏类型和平均在线人数。
原因分析:
#数据整理
import pandas as pd
index_pd0=['平均在线数','人数峰值','类型','游戏名称','发布时间','评分']
df0=pd.read_csv('data.csv',encoding='utf-8',names=index_pd0,header=None)
df1=df0[['平均在线数','类型','游戏名称','发布时间','评分']]
levels=pd.cut(df1['评分'],[0,3,7,10],labels=list('CBA')