定积分:分割近似求和取极限
定积分存在的必要条件:若f(x)在某域内可积,则它在该域内必有界
定积分存在的充分条件:
- 若连续,则可积;
- 单调有界函数必可积;
- 有界,有限个间断点
尽量不要极限号和积分号换位
达布大和:将区间分成无数小区间,每个小区间的极大值记为M,△x为小区间的长度,达布大和S(T)=M△x的累加。达布大和是曲线外界多边形的面积
达布小和同理
即便采用不同的分割,任一达布大和总是大于等于达布小和
所以:
达布定理:
定积分存在的充分条件
可积函数判别:
f(x)可积->f(x)的绝对值可积,平方可积。 反之不然
绝对值可积<-->平方可积 常用反例 : 1,有理数-1,无理数
定积分第一中值定理:
注意:g(x)不能变号
例:
变限积分:
注意:变上限积分的f中如果有自变量x,n那么不能直接求导 例如上面这道题,直接求就错了
定积分与不定积分的关系
定积分存在不定积分不一定存在,反之亦然
例
cost^2有原函数(因为它连续)但不能用初等函数表示出来,所以不能求出它的积分结果(否则算错,属于混淆定积分与不定积分的概念)
定积分的换元积分法:
定积分的分部积分法使用前提
使用分部积分时,积分上下限不变
此题如果用这种方法就错了:
因为横线处没有用分部积分,积分上下限应该改变
分部积分yyds
做积分之前都应该先考虑能不能化简
施瓦兹不等式
积分应用: 求面积
求平面曲线弧长
体积: