数学分析 第七章 定积分

本文探讨了定积分的基本概念,包括存在条件(如连续性、单调性等)、充分条件(如达布定理),以及判断函数可积的方法。还涉及变限积分、换元积分法和分部积分的使用注意事项。内容涵盖了积分的性质、定积分与不定积分的关系以及实际应用,如面积、弧长和体积计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定积分:分割近似求和取极限

定积分存在的必要条件:若f(x)在某域内可积,则它在该域内必有界

定积分存在的充分条件:

  1. 若连续,则可积;
  2. 单调有界函数必可积;
  3. 有界,有限个间断点

尽量不要极限号和积分号换位

达布大和:将区间分成无数小区间,每个小区间的极大值记为M,△x为小区间的长度,达布大和S(T)=M△x的累加。达布大和是曲线外界多边形的面积

达布小和同理

即便采用不同的分割,任一达布大和总是大于等于达布小和

所以:

达布定理:

定积分存在的充分条件

可积函数判别:

f(x)可积->f(x)的绝对值可积,平方可积。   反之不然

绝对值可积<-->平方可积   常用反例 :  1,有理数-1,无理数

定积分第一中值定理:

注意:g(x)不能变号

例:

变限积分:

注意:变上限积分的f中如果有自变量x,n那么不能直接求导                              例如上面这道题,直接求就错了

定积分与不定积分的关系

定积分存在不定积分不一定存在,反之亦然

cost^2有原函数(因为它连续)但不能用初等函数表示出来,所以不能求出它的积分结果(否则算错,属于混淆定积分与不定积分的概念)

定积分的换元积分法:

定积分的分部积分法使用前提

 使用分部积分时,积分上下限不变

                                 此题如果用这种方法就错了:

                              因为横线处没有用分部积分,积分上下限应该改变

分部积分yyds

做积分之前都应该先考虑能不能化简

施瓦兹不等式

积分应用:  求面积

求平面曲线弧长

体积:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值