题目
用最少数量的箭引爆气球
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
样例
示例 1:
输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
示例 2:
输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4
示例 3:
输入:points = [[1,2],[2,3],[3,4],[4,5]]
输出:2
示例 4:
输入:points = [[1,2]]
输出:1
解决方法
语言:C++
方法:
在本题中,我们需要求得能射穿最多气球的多个最好位置
由于题目中可以射穿的位置包含最左最右坐标
所以我们可以依据这一特点
通过最右坐标的排序,测得在某一气球的右坐标下可以射穿的气球
当该坐标无法包含之后的气球时,箭数+1而后继续查找
代码(含注释)
//射气球
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
class Solution {
public:
int findMinArrowShots(vector<vector<int>>& points) {
sort(points.begin(),points.end(),[](const vector<int> &x,const vector<int> &y){
return x[1] < y[1];
}); //使用lambda表达式进行排序
int pos = points[0][1]; //首先使用最右坐标最小气球作为初始值
int ans = 0;
for(auto &x : points)
{
if(x[0] > pos) //若该气球无法被射爆,就将下一个气球的右坐标作为下一个定值
{
pos = x[1];
ans++;
}
}
return ans;
}
};
运行结果
后记
当初见这道题时,因为是合并区间的方法,但后思虽然合并区间方法可以做,但更麻烦,这种方法更简便一些。