7-15 最短路径之旅游规划 (10 分)
现有一张自驾旅游路线图,通过地图你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。(注:该题目来源于浙江大学陈越老师题目,因为Java编译的时间和内存限制问题,暂时新增题目以便通过,如有能减少消耗的,也请不吝指导。)
输入格式:
输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。
输出格式:
在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。
输入样例:
在这里给出一组输入。例如:
6 8 1 5
0 1 3 20
1 2 2 10
0 3 4 10
1 5 12 90
2 4 3 40
4 5 5 30
3 5 7 50
2 3 9 30
输出样例:
在这里给出相应的输出。例如:
10 80
不太会,写不出来。
#include <bits/stdc++.h>
#define MaxInt 32767
using namespace std;
int city[500]; //存放城市信息
int edge[500][500]; //存放任意两个城市间的高速公路长度
int cost[500][500]; //存放任意两个城市间的过路费
//使用迪杰斯特拉算法求源点start到终点end的最短路径,n表示城市总数
void dig(int start,int end,int n) {
//数组d存储源点到其它城市的最短路径长度,数组fei存储源点到其它城市的高速费,数组s存储城市是否已求得最短路径标志
int d[500],v,i,min,w,fei[500],k;
bool s[500];
//初始化数组d,s,fei
for(v=0; v<n; v++) {
d[v]=edge[start][v]; //第v个分量初始化为源点start到第v个城市的直接路径长度
fei[v]=cost[start][v];
s[v]=false;
}
//将start设置为源点(出发点)
s[start]=true;
d[start]=0;
fei[start]=0;
//循环n-1次,每次求源点到其它一个顶点的最短距离
for(i=1; i<n; i++) {
min=MaxInt;
for(w=0; w<n; w++) { //寻找距离源点最近的第v个顶点
if(d[w]<=min&&!s[w]) {
min=d[w];
v=w;
}
}
s[v]=true; //已求得源点到第v个顶点的最短路径,设置其标志为true
for(w=0; w<n; w++) { //更新源点到其它顶点的最短距离
if(d[v]+edge[v][w]<d[w] &&!s[w]) { //若发现经顶点v的中转后路径变得更短,则更新之
d[w]=d[v]+edge[v][w];
fei[w]=fei[v]+cost[v][w];
}
if(d[v]+edge[v][w]==d[w]&&fei[v]+cost[v][w]<fei[w]&&!s[w]) { //若发现过路费更少的方案,则更新之
d[w]=d[v]+edge[v][w];
fei[w]=fei[v]+cost[v][w];
}
}
}
//输出最短路径长度
cout<<d[end]<<" "<<fei[end];
}
int main() {
int n,m,s,d,i,j;
int k1,k2,k3,k4;
cin>>n>>m>>s>>d;
for(i=0; i<n; i++) //初始化city数组
city[i]=i;
for(i=0; i<500; i++) //初始化edge数组
for(j=0; j<500; j++)
edge[i][j]=10000;
for(j=0; j<m; j++) { //根据每条边的长度和费用为edge和cost赋值
cin>>k1>>k2>>k3>>k4;
edge[k1][k2]=k3;
edge[k2][k1]=k3;
cost[k1][k2]=k4;
cost[k2][k1]=k4;
}
dig(s,d,n); //求s到d的最短路径
return 0;
}