7-15 最短路径之旅游规划 (10 分)

本文介绍了如何使用迪杰斯特拉算法来解决一个自驾旅游路线图中的最短路径规划问题。给定城市间的高速公路长度和过路费,程序需要找到出发地到目的地的最短路径,并在有多条最短路径时选择费用最低的一条。输入包括城市数量、道路数量、起始城市和目标城市,输出是最短路径的总长度和总费用。示例输入和输出展示了算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7-15 最短路径之旅游规划 (10 分)

现有一张自驾旅游路线图,通过地图你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。(注:该题目来源于浙江大学陈越老师题目,因为Java编译的时间和内存限制问题,暂时新增题目以便通过,如有能减少消耗的,也请不吝指导。)

输入格式:

输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。

输出格式:

在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。

输入样例:

在这里给出一组输入。例如:

6 8 1 5
0 1 3 20
1 2 2 10
0 3 4 10
1 5 12 90
2 4 3 40
4 5 5 30
3 5 7 50
2 3 9 30

输出样例:

在这里给出相应的输出。例如:

10 80

不太会,写不出来。

#include <bits/stdc++.h>
#define MaxInt 32767
using namespace std;
int city[500];  //存放城市信息
int edge[500][500];   //存放任意两个城市间的高速公路长度
int cost[500][500];   //存放任意两个城市间的过路费

//使用迪杰斯特拉算法求源点start到终点end的最短路径,n表示城市总数
void dig(int start,int end,int n) {
	//数组d存储源点到其它城市的最短路径长度,数组fei存储源点到其它城市的高速费,数组s存储城市是否已求得最短路径标志
	int d[500],v,i,min,w,fei[500],k;
	bool s[500];
	//初始化数组d,s,fei
	for(v=0; v<n; v++) {
		d[v]=edge[start][v]; //第v个分量初始化为源点start到第v个城市的直接路径长度
		fei[v]=cost[start][v];
		s[v]=false;
	}
	//将start设置为源点(出发点)
	s[start]=true;
	d[start]=0;
	fei[start]=0;
	//循环n-1次,每次求源点到其它一个顶点的最短距离
	for(i=1; i<n; i++) {
		min=MaxInt;
		for(w=0; w<n; w++) { //寻找距离源点最近的第v个顶点
			if(d[w]<=min&&!s[w]) {
				min=d[w];
				v=w;
			}
		}
		s[v]=true;    //已求得源点到第v个顶点的最短路径,设置其标志为true
		for(w=0; w<n; w++) { //更新源点到其它顶点的最短距离
			if(d[v]+edge[v][w]<d[w] &&!s[w]) { //若发现经顶点v的中转后路径变得更短,则更新之
				d[w]=d[v]+edge[v][w];
				fei[w]=fei[v]+cost[v][w];
			}
			if(d[v]+edge[v][w]==d[w]&&fei[v]+cost[v][w]<fei[w]&&!s[w]) { //若发现过路费更少的方案,则更新之
				d[w]=d[v]+edge[v][w];
				fei[w]=fei[v]+cost[v][w];
			}
		}
	}
	//输出最短路径长度
	cout<<d[end]<<" "<<fei[end];
}
int main() {
	int n,m,s,d,i,j;
	int k1,k2,k3,k4;
	cin>>n>>m>>s>>d;
	for(i=0; i<n; i++) //初始化city数组
		city[i]=i;
	for(i=0; i<500; i++) //初始化edge数组
		for(j=0; j<500; j++)
			edge[i][j]=10000;
	for(j=0; j<m; j++) { //根据每条边的长度和费用为edge和cost赋值
		cin>>k1>>k2>>k3>>k4;
		edge[k1][k2]=k3;
		edge[k2][k1]=k3;
		cost[k1][k2]=k4;
		cost[k2][k1]=k4;
	}
	dig(s,d,n); //求s到d的最短路径
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摆烂.MVP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值