可解释的几何加权图注意力网络”的神经网络结构:识别与步态障碍相关

An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment

摘要

帕金森病(PD)患者通常会出现步态困难和平衡问题,这是疾病的典型症状之一。通过识别与步态障碍相关的大脑功能紊乱,可以更好地理解PD的运动进展,从而推动更有效和个性化的治疗方法的发展。作者提出了一种名为xGW-GAT的新型神经网络,旨在预测PD患者步态困难的进展。这个网络使用MDS-Unified PD Rating Scale(MDS-UPDRS)来对多类步态障碍进行预测。他们的模型采用了一种计算和数据高效的方法,将功能连接组表示为黎曼流形上的对称正定矩阵(SPD矩阵),以便明确地编码整个连接组的成对交互作用。应用于PD患者的静息态功能磁共振成像(rs-fMRI)数据集,xGW-GAT成功地识别出了与步态障碍相关的功能连接模式,并提供了对运动障碍相关功能子网络的可解释说明。
代码地址

本文方法

在这里插入图片描述
图1展示了xGW-GAT的整体结构和工作流程:
(A) 输入:功能连接组。
(B) 提取SPD(d)中的成对切向矩阵。
© 将切向矩阵压缩成加权图(连接组)。
(D) 使用线性回归在训练样本上训练一个映射f,学习目标和记录分数之间的成对差异。
(E) 在N次交叉验证运行中,对每个类别选择前k个预测差异最小的样本,并对不平衡进行过采样。
(F) 将样本表示为加权图,并使用边权重感知的注意力来编码和传播学习;预测步态评分。
(G) 为每个类别或个体参与者在功能性脑网络内产生解释掩码。

Connectomes in a Riemannian Manifold

功能连接矩阵被归类为对称正定(SPD)矩阵的一部分。作者利用黎曼几何原理对不同的连接组进行了比较。为了突出相邻节点之间的连接,每个权重矩阵被表示为一个对称的邻接矩阵,具有零、非负的特征值。然后,这些矩阵被视为流形上的点,在局部上呈现出拓扑欧几里得空间的特征。然而,由于流形并不构成向量空间,因此作者使用平行传输将每个SPD矩阵投影到一个共同的切空间上。这个过程生成了一组共同切空间中的切向量,可以使用传统的欧几里得方法进行分析。为了计算两个SPD矩阵之间的测地距离,作者采用了对数欧几里得黎曼度量(LERM)距离的计算方法。
在这里插入图片描述

Stratified Learning-Based Sample Selection

在真实世界的临床数据集中,数据可用性和数据集不平衡是经常出现的挑战,往往会导致偏差和过拟合。作者通过扩展一种基于学习的样本选择方法来解决这个问题,以加权每个类别的分布。他们假设相似的大脑连接网络与疾病严重程度相关,而拓扑模式变化的连接组可能引起不同的步态障碍评分。他们的子采样技术选择了包含最高代表性的训练样本,即对预测步态评分贡献最少的样本。他们将训练样本划分为子组:train-in、ns和holdout、nt,使用N次交叉验证。对于每一对对称的d×d切向矩阵Ss,s i,j ∈ TISPD(d),他们对来自train-in、ns的连接组之间的成对差异进行编码,以获得一组ns(ns−1)/2个切向矩阵。每个切向矩阵表示两个连接组之间的“差异”。他们选择度、接近度和特征向量中心性作为拓扑特征,以编码节点连接的变化信息。他们在Riemannian几何距离Dle(Ss i , Ss j )上对ns的连接组之间进行线性回归映射f的训练,其中Dle(Ss i , Ss j )是切向矩阵的向量化上三角部分(包括对角线)。在train-in组中,每个类别的样本i和j之间的目标评分的绝对差异以|yˆs c,j − yˆs c,i|表示。具有最高预测能力的每个类别的top-k样本从总训练集中被子选出,通过RandomOverSampler过采样用于处理类别不平衡,并用于训练xGW-GAT层。

Dynamic Graph Attention Layers

采用了图注意力网络(GATv2),这是图注意力网络(GAT)的一种变体,用于对每个节点Sn进行动态的、多头的、边权重注意力消息传递,进行分类。他们假设每个节点i ∈ V都有一个初始表示h(0)i ∈ Rd0。GATv2根据相邻节点的特征和节点之间的边权重更新每个节点的表示h,通过计算每条边(i, j)的注意力分数αij来归一化注意力系数e(hi, hj)。αij通过对相邻节点j ∈ Ni进行加权求和来衡量第l层时节点j的特征对节点i的重要性:

Individual- And Global-Level Explanations

他们为每个样本n ∈ 1, 2,…,N和每个类别c ∈ 1, 2,…,C定义了一个注意力解释掩码,用于识别对主体分类贡献最重要的节点/ROI连接。他们返回了每个样本n的一组注意力系数αn = [αn1, αn2,…,αnS],其中S是注意力头的数量。他们通过对每个样本用于预测每个ˆy的训练后的注意力系数进行聚合,使用最大操作返回αnmax ∈ Rd×d。可以使用最大注意力系数αmax,推导出每个类别的解释掩码Mc或每个样本的解释掩码Mn

实验结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值