DeSTSeg:用于异常检测的分割网络引导去噪学生教师模型(CVPR2023)

DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection

摘要

视觉异常检测是计算机视觉中的一个重要问题,通常被定义为一类分类和分割任务。学生-教师(S-T)框架已被证明在解决这一挑战方面是有效的。然而,先前基于S-T的工作仅在经验上对正态数据和融合的多级信息应用了约束。
本文方法

  1. 提出了一种称为DeSTSeg的改进模型
  2. 将预先训练的教师网络、去噪的学生编码器-解码器和分割网络集成到一个框架中
  3. 为了加强对异常数据的约束,我们引入了一种去噪程序,使学生网络能够学习更稳健的表示
  4. 从综合损坏的正常图像中,训练学生网络在没有损坏的情况下匹配相同图像的教师网络特征
  5. 为了自适应地融合多级S-T特征,从合成异常掩码中训练了一个具有丰富监督的分割网络

本文方法

在这里插入图片描述
DeSTSeg概述。在训练期间生成并使用合成的异常图像。
(a)中,训练具有合成输入的学生网络,以从干净的图像生成与教师网络类似的特征表示。
(b)中,学生和教师网络的归一化输出的元素乘积被连接起来,并用于训练分割网络。分割输出是预测的异常得分图。

将合成异常引入到正常训练图像中,并分两步对模型进行训练。在第一步中,模拟的异常图像被用作学生网络的输入,而原始的干净图像被用作教师网络的输入。教师网络的权重是固定的,但用于去噪的学生网络是可训练的。在第二步中,学生模型也被固定。学生网络和教师网络都以合成的异常图像作为输入,以优化分割网络中的参数来定位异常区域。为了推断,以端到端模式生成像素级异常图,并且可以通过后处理来计算相应的图像级异常分数。

Synthetic Anomaly Generation

生成随机二维珀林噪声,并通过预设阈值进行二值化以获得异常掩模M。通过用无异常图像In和来自外部数据源a的任意图像的线性组合替换掩模区域来生成异常图像Ia,不透明度系数β在[0.15,1]之间随机选择。
在这里插入图片描述

Denoising Student-Teacher Network

在以前的多层次知识提取方法中,学生网络(正常图像)的输入与教师网络的输入相同,学生网络的架构也是如此。然而,我们提出的去噪学生网络和教师网络以成对的异常和正常图像作为输入,去噪学生网具有不同的编码器-编码器架构。
教师网络是在大型数据集上预先训练的,因此它可以在正常和异常区域生成判别特征表示。
学生网络不应复制教师网络的架构。考虑到重建早期层的特征的过程,众所周知,CNN的较低层捕获局部信息,如纹理和颜色。相反,CNN的上层表示全局语义信息。回想一下,我们的去噪学生网络应该从教师网络中重建相应正常图像的特征,这样的任务依赖于图像的全局语义信息,仅用几个较低的层是无法完美完成的。
教师网络是ImageNet预训练的ResNet18[14],其中移除了最终块(即conv5x)。从剩余的三个块,即分别表示为T1、T2和T3的conv2x、conv3x和conv4x中提取输出特征图。
去噪学生网络,编码器是随机初始化的ResNet18,具有所有块,分别命名为S1E、S2E、S3E和S4E。解码器是具有四个残差块(分别命名为S4D、S3D、S2D和S1D)的反向ResNet18(通过用双线性上采样代替所有下采样)。
损失函数:
在这里插入图片描述

分割网络

分割网络包含两个残差块和一个Atrous Spatial Pyramid Pooling(ASPP)模块。不存在上采样或下采样;因此输出大小等于X1的大小。尽管这可能在一定程度上导致分辨率损失,但它降低了训练和推理的内存成本,这在实践中至关重要。
损失函数:
在这里插入图片描述

推理

在推理阶段,测试图像被输入教师和学生网络。分割预测最终被上采样到输入大小,并作为异常得分图。预计输入图像中的异常像素在输出中将具有更大的值。为了计算图像级异常分数,我们使用异常分数图中顶部T值的平均值,其中T是调整超参数。

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

消融实验

在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
自监督图像去噪是一种通过自动合成噪声图像对进行训练的方法,用于消除图像中的噪声并恢复原始图像的技术。在CVPR2023会议中,发表了一篇名为"Learning A Sparse Transformer Network for Effective Image Deraining"的论文,该论文提出了一种基于稀疏Transformer网络的自监督图像去噪方法。 图像去噪是一个基本的低级图像处理任务,其目标是消除噪声并恢复清晰的图像。而自监督图像去噪方法使用自动生成的噪声图像对进行训练,可以在没有人工标签的情况下学习图像去噪模型深度学习已经成为图像去噪的主流方法,特别是Transformer模型的出现,它在各种图像任务上取得了显著的进展。然而,现有的基于深度学习的方法在噪声分布不同的情况下可能缺乏泛化能力。例如,在高斯噪声上训练的模型可能在其他噪声分布上的测试中表现不佳。 因此,CVPR2023的这篇论文提出了一种基于稀疏Transformer网络的自监督图像去噪方法,通过学习噪声图像对进行训练,可以有效地消除图像中的噪声并恢复原始图像的质量。这种方法具有很大的潜力在实际图像处理任务中得到应用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [CVPR 2023 | 去雨去噪去模糊,图像low-level任务,视觉AIGC系列](https://blog.csdn.net/lgzlgz3102/article/details/130939564)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [【论文速递】CVPR2022-Blind2Unblind:具有可见盲点的自监督图像去噪](https://blog.csdn.net/weixin_47525542/article/details/128780908)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值